Jahn, R. & Scheller, R.H. SNAREs—engines for membrane fusion. Nat. Rev. Mol. Cell Biol.7, 631–643 (2006). ArticleCASPubMed Google Scholar
Wojcik, S.M. & Brose, N. Regulation of membrane fusion in synaptic excitation-secretion coupling: speed and accuracy matter. Neuron55, 11–24 (2007). ArticleCASPubMed Google Scholar
McMahon, H.T., Missler, M., Li, C. & Sudhof, T.C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell83, 111–119 (1995). ArticleCASPubMed Google Scholar
Takahashi, S. et al. Identification of two highly homologous presynaptic proteins distinctly localized at the dendritic and somatic synapses. FEBS Lett.368, 455–460 (1995). ArticleCASPubMed Google Scholar
Ishizuka, T., Saisu, H., Odani, S. & Abe, T. Synaphin: a protein associated with the docking/fusion complex in presynaptic terminals. Biochem. Biophys. Res. Commun.213, 1107–1114 (1995). ArticleCASPubMed Google Scholar
Pabst, S. et al. Selective interaction of complexin with the neuronal SNARE complex. Determination of the binding regions. J. Biol. Chem.275, 19808–19818 (2000). ArticleCASPubMed Google Scholar
Pabst, S. et al. Rapid and selective binding to the synaptic SNARE complex suggests a modulatory role of complexins in neuroexocytosis. J. Biol. Chem.277, 7838–7848 (2002). ArticleCASPubMed Google Scholar
Li, Y., Augustine, G.J. & Weninger, K. Kinetics of complexin binding to the SNARE complex: correcting single molecule FRET measurements for hidden events. Biophys. J.93, 2178–2187 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bowen, M.E., Weninger, K., Ernst, J., Chu, S. & Brunger, A.T. Single-molecule studies of synaptotagmin and complexin binding to the SNARE complex. Biophys. J.89, 690–702 (2005). ArticleCASPubMedPubMed Central Google Scholar
Chen, X. et al. Three-dimensional structure of the complexin/SNARE complex. Neuron33, 397–409 (2002). ArticleCASPubMed Google Scholar
Bracher, A., Kadlec, J., Betz, H. & Weissenhorn, W. X-ray structure of a neuronal complexin–SNARE complex from squid. J. Biol. Chem.277, 26517–26523 (2002). ArticleCASPubMed Google Scholar
Brose, N. For better or for worse: complexins regulate SNARE function and vesicle fusion. Traffic9, 1403–1413 (2008). ArticleCASPubMed Google Scholar
Huntwork, S. & Littleton, J.T. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat. Neurosci.10, 1235–1237 (2007). ArticleCASPubMed Google Scholar
Maximov, A., Tang, J., Yang, X., Pang, Z.P. & Sudhof, T.C. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science323, 516–521 (2009). ArticleCASPubMedPubMed Central Google Scholar
Reim, K. et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell104, 71–81 (2001). ArticleCASPubMed Google Scholar
Xue, M. et al. Complexins facilitate neurotransmitter release at excitatory and inhibitory synapses in mammalian central nervous system. Proc. Natl. Acad. Sci. USA105, 7875–7880 (2008). ArticleCASPubMedPubMed Central Google Scholar
Strenzke, N. et al. Complexin-I is required for high-fidelity transmission at the endbulb of held auditory synapse. J. Neurosci.29, 7991–8004 (2009). ArticleCASPubMedPubMed Central Google Scholar
Cai, H. et al. Complexin II plays a positive role in Ca2+-triggered exocytosis by facilitating vesicle priming. Proc. Natl. Acad. Sci. USA105, 19538–19543 (2008). ArticleCASPubMedPubMed Central Google Scholar
Giraudo, C.G., Eng, W.S., Melia, T.J. & Rothman, J.E. A clamping mechanism involved in SNARE-dependent exocytosis. Science313, 676–680 (2006). ArticleCASPubMed Google Scholar
Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K. & McNew, J.A. Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nat. Struct. Mol. Biol.13, 748–750 (2006). ArticleCASPubMed Google Scholar
Malsam, J. et al. The carboxy-terminal domain of complexin I stimulates liposome fusion. Proc. Natl. Acad. Sci. USA106, 2001–2006 (2009). ArticleCASPubMedPubMed Central Google Scholar
Xue, M. et al. Distinct domains of complexin I differentially regulate neurotransmitter release. Nat. Struct. Mol. Biol.14, 949–958 (2007). ArticleCASPubMedPubMed Central Google Scholar
Xue, M. et al. Tilting the balance between facilitatory and inhibitory functions of mammalian and Drosophila complexins orchestrates synaptic vesicle exocytosis. Neuron64, 367–380 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tang, J. et al. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell126, 1175–1187 (2006). ArticleCASPubMed Google Scholar
Roggero, C.M. et al. Complexin/synaptotagmin interplay controls acrosomal exocytosis. J. Biol. Chem.282, 26335–26343 (2007). ArticleCASPubMed Google Scholar
Dai, H., Shen, N., Arac, D. & Rizo, J. A quaternary SNARE-synaptotagmin-Ca2+-phospholipid complex in neurotransmitter release. J. Mol. Biol.367, 848–863 (2007). ArticleCASPubMedPubMed Central Google Scholar
Rosenmund, C. & Stevens, C.F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron16, 1197–1207 (1996). ArticleCASPubMed Google Scholar
Seiler, F., Malsam, J., Krause, J.M. & Sollner, T.H. A role of complexin-lipid interactions in membrane fusion. FEBS Lett.583, 2343–2348 (2009). ArticleCASPubMedPubMed Central Google Scholar
Arac, D. et al. Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat. Struct. Mol. Biol.13, 209–217 (2006). ArticleCASPubMed Google Scholar
Battiste, J.L. & Wagner, G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry39, 5355–5365 (2000). ArticleCASPubMed Google Scholar
Stevens, C.F. & Wesseling, J.F. Augmentation is a potentiation of the exocytotic process. Neuron22, 139–146 (1999). ArticleCASPubMed Google Scholar
Basu, J., Betz, A., Brose, N. & Rosenmund, C. Munc13–1 C1 domain activation lowers the energy barrier for synaptic vesicle fusion. J. Neurosci.27, 1200–1210 (2007). ArticleCASPubMedPubMed Central Google Scholar
Geppert, M. et al. Synaptotagmin I: a major Ca2+ sensor for transmitter release at a central synapse. Cell79, 717–727 (1994). ArticleCASPubMed Google Scholar
Guan, R., Dai, H. & Rizo, J. Binding of the Munc13–1 MUN domain to membrane-anchored SNARE complexes. Biochemistry47, 1474–1481 (2008). ArticleCASPubMed Google Scholar
Weninger, K., Bowen, M.E., Choi, U.B., Chu, S. & Brunger, A.T. Accessory proteins stabilize the scceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. Structure16, 308–320 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lu, B., Song, S. & Shin, Y.K. Accessory α-helix of complexin I can displace VAMP2 locally in the complexin–SNARE quaternary complex. J. Mol. Biol.396, 602–609 (2010). ArticleCASPubMed Google Scholar
Xue, M., Ma, C., Craig, T.K., Rosenmund, C. & Rizo, J. The Janus-faced nature of the C(2)B domain is fundamental for synaptotagmin-1 function. Nat. Struct. Mol. Biol.15, 1160–1168 (2008). ArticleCASPubMedPubMed Central Google Scholar
Ashery, U., Betz, A., Xu, T., Brose, N. & Rettig, J. An efficient method for infection of adrenal chromaffin cells using the Semliki Forest virus gene expression system. Eur. J. Cell Biol.78, 525–532 (1999). ArticleCASPubMed Google Scholar
Chen, X. et al. SNARE-mediated lipid mixing depends on the physical state of the vesicles. Biophys. J.90, 2062–2074 (2006). ArticleCASPubMed Google Scholar