Rosenmund, C., Rettig, J. & Brose, N. Molecular mechanisms of active zone function. Curr. Opin. Neurobiol.13, 509–519 (2003). ArticleCASPubMed Google Scholar
Brunger, A.T. Structure and function of SNARE and SNARE-interacting proteins. Q. Rev. Biophys.38, 1–47 (2005). ArticleCASPubMed Google Scholar
Rizo, J., Chen, X. & Arac, D. Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol.16, 339–350 (2006). ArticleCASPubMed Google Scholar
Jahn, R. & Scheller, R.H. SNAREs — engines for membrane fusion. Nat. Rev. Mol. Cell Biol.7, 631–643 (2006). ArticleCASPubMed Google Scholar
Verhage, M. & Toonen, R.F. Regulated exocytosis: merging ideas on fusing membranes. Curr. Opin. Cell Biol.19, 402–408 (2007). ArticleCASPubMed Google Scholar
Chapman, E.R. How does synaptotagmin trigger neurotransmitter release? Annu. Rev. Biochem.77, 615–641 (2008). ArticleCASPubMed Google Scholar
Montecucco, C., Schiavo, G. & Pantano, S. SNARE complexes and neuroexocytosis: how many, how close? Trends Biochem. Sci.30, 367–372 (2005). ArticleCASPubMed Google Scholar
Sollner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H. & Rothman, J.E. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell75, 409–418 (1993). ArticleCASPubMed Google Scholar
Sollner, T. et al. SNAP receptors implicated in vesicle targeting and fusion. Nature362, 318–324 (1993). This paper introduces the SNARE hypothesis and postulates that a universal membrane fusion apparatus includes vesicle SNAREs and target-membrane SNAREs that bind to each other and mediate targeting specificity. ArticleCASPubMed Google Scholar
Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature395, 347–353 (1998). The crystal structure of the neuronal SNARE complex is described, providing a structural basis for understanding SNARE function at atomic resolution. ArticleCASPubMed Google Scholar
Poirier, M.A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol.5, 765–769 (1998). ArticleCASPubMed Google Scholar
Hanson, P.I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J.E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell90, 523–535 (1997). The SNARE motifs of syntaxin-1 and synaptobrevin are shown to bind in a parallel fashion, leading to the proposal that SNARE complex assembly may provide the energy for membrane fusion. ArticleCASPubMed Google Scholar
Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell92, 759–772 (1998). This paper describes reconstitution experiments that provide a powerful tool to study the role of diverse factors in membrane fusion and suggested that SNAREs alone may be able to induce membrane fusion. ArticleCASPubMed Google Scholar
Fernandez, I. et al. Three-dimensional structure of an evolutionarily conserved N-terminal domain of syntaxin 1A. Cell94, 841–849 (1998). ArticleCASPubMed Google Scholar
Dulubova, I. et al. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J.18, 4372–4382 (1999). Syntaxin-1 is shown to adopt a closed conformation that binds to Munc18-1 and is incompatible with SNARE complex formation, suggesting that syntaxin-1 undergoes a large conformational change during exocytosis. ArticleCASPubMedPubMed Central Google Scholar
Parlati, F. et al. Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl. Acad. Sci. USA96, 12565–12570 (1999). ArticleCASPubMedPubMed Central Google Scholar
Melia, T.J. et al. Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J. Cell Biol.158, 929–940 (2002). ArticleCASPubMedPubMed Central Google Scholar
Pobbati, A.V., Stein, A. & Fasshauer, D. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science313, 673–676 (2006). ArticleCASPubMed Google Scholar
Zhang, F., Chen, Y., Kweon, D.H., Kim, C.S. & Shin, Y.K. The four-helix bundle of the neuronal target membrane SNARE complex is neither disordered in the middle nor uncoiled at the C-terminal region. J. Biol. Chem.277, 24294–24298 (2002). ArticleCASPubMed Google Scholar
Guan, R., Dai, H. & Rizo, J. Binding of the Munc13–1 MUN domain to membrane-anchored SNARE complexes. Biochemistry47, 1474–1481 (2008). ArticleCASPubMed Google Scholar
Weninger, K., Bowen, M.E., Choi, U.B., Chu, S. & Brunger, A.T. Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. Structure16, 308–320 (2008). ArticleCASPubMedPubMed Central Google Scholar
Xu, T. et al. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell99, 713–722 (1999). ArticleCASPubMed Google Scholar
Sorensen, J.B. et al. Sequential N- to C-terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J.25, 955–966 (2006). ArticleCASPubMedPubMed Central Google Scholar
Chen, X. et al. Three-dimensional structure of the complexin/SNARE complex. Neuron33, 397–409 (2002). A combination of NMR spectroscopy and X-ray crystallography reveals the interaction between complexin-I and the SNARE complex at atomic resolution and suggests that complexin binding stabilizes the C-terminus of the SNARE complex. ArticleCASPubMed Google Scholar
Li, F. et al. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat. Struct. Mol. Biol.14, 890–896 (2007). ArticleCASPubMed Google Scholar
Cohen, F.S. & Melikyan, G.B. The energetics of membrane fusion from binding, through hemifusion, pore formation, and pore enlargement. J. Membr. Biol.199, 1–14 (2004). ArticleCASPubMed Google Scholar
McNew, J.A. et al. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J. Cell Biol.150, 105–117 (2000). ArticleCASPubMedPubMed Central Google Scholar
Langosch, D. et al. Peptide mimics of SNARE transmembrane segments drive membrane fusion depending on their conformational plasticity. J. Mol. Biol.311, 709–721 (2001). ArticleCASPubMed Google Scholar
Kweon, D.H., Kim, C.S. & Shin, Y.K. Regulation of neuronal SNARE assembly by the membrane. Nat. Struct. Biol.10, 440–447 (2003). ArticleCASPubMed Google Scholar
Chen, X. et al. SNARE-mediated lipid mixing depends on the physical state of the vesicles. Biophys. J.90, 2062–2074 (2006). ArticleCASPubMed Google Scholar
Dennison, S.M., Bowen, M.E., Brunger, A.T. & Lentz, B.R. Neuronal SNAREs do not trigger fusion between synthetic membranes but do promote PEG-mediated membrane fusion. Biophys. J.90, 1661–1675 (2006). ArticleCASPubMed Google Scholar
Bowen, M.E., Weninger, K., Brunger, A.T. & Chu, S. Single molecule observation of liposome-bilayer fusion thermally induced by soluble N-ethyl maleimide sensitive-factor attachment protein receptors (SNAREs). Biophys. J.87, 3569–3584 (2004). This paper shows that multiple SNARE complexes bridging a vesicle and a planar membrane can form without inducing membrane fusion, suggesting that SNARE complex formation is not sufficient for membrane fusion. ArticleCASPubMedPubMed Central Google Scholar
Kesavan, J., Borisovska, M. & Bruns, D. v-SNARE actions during Ca2+-triggered exocytosis. Cell131, 351–363 (2007). ArticleCASPubMed Google Scholar
McNew, J.A., Weber, T., Engelman, D.M., Sollner, T.H. & Rothman, J.E. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol. Cell4, 415–421 (1999). ArticleCASPubMed Google Scholar
Kim, C.S., Kweon, D.H. & Shin, Y.K. Membrane topologies of neuronal SNARE folding intermediates. Biochemistry41, 10928–10933 (2002). ArticleCASPubMed Google Scholar
Deak, F., Shin, O.H., Kavalali, E.T. & Sudhof, T.C. Structural determinants of synaptobrevin 2 function in synaptic vesicle fusion. J. Neurosci.26, 6668–6676 (2006). ArticleCASPubMedPubMed Central Google Scholar
Verhage, M. et al. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science287, 864–869 (2000). This paper shows that neurotransmitter secretion from synaptic vesicles is completely abrogated in Munc18-1 knockout mice and that the brain can still assemble in the absence of neurotransmitter release. ArticleCASPubMed Google Scholar
Yang, B., Steegmaier, M. & Gonzalez, L.C. Jr. & Scheller, R.H. nSec1 binds a closed conformation of syntaxin1A. J. Cell Biol.148, 247–252 (2000). ArticleCASPubMedPubMed Central Google Scholar
Misura, K.M., Scheller, R.H. & Weis, W.I. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature404, 355–362 (2000). The crystal structure of syntaxin-1 bound to Munc18-1 is described, providing the first atomic resolution structure of a SM protein and revealing how Munc18-1 binds to the syntaxin-1 closed conformation. ArticleCASPubMed Google Scholar
Carr, C.M., Grote, E., Munson, M., Hughson, F.M. & Novick, P.J. Sec1p binds to SNARE complexes and concentrates at sites of secretion. J. Cell Biol.146, 333–344 (1999). Sec1p is shown to bind to its cognate SNARE complex, providing the first evidence for formation of the SM protein–SNARE complex assemblies that may form the core of intracellular membrane fusion machineries. ArticleCASPubMedPubMed Central Google Scholar
Togneri, J., Cheng, Y.S., Munson, M., Hughson, F.M. & Carr, C.M. Specific SNARE complex binding mode of the Sec1/Munc-18 protein, Sec1p. Proc. Natl. Acad. Sci. USA103, 17730–17735 (2006). ArticleCASPubMedPubMed Central Google Scholar
Nicholson, K.L. et al. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p. Nat. Struct. Biol.5, 793–802 (1998). ArticleCASPubMed Google Scholar
Dulubova, I., Yamaguchi, T., Wang, Y., Sudhof, T.C. & Rizo, J. Vam3p structure reveals conserved and divergent properties of syntaxins. Nat. Struct. Biol.8, 258–264 (2001). ArticleCASPubMed Google Scholar
Yamaguchi, T. et al. Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Dev. Cell2, 295–305 (2002). ArticleCASPubMed Google Scholar
Shen, J., Tareste, D.C., Paumet, F., Rothman, J.E. & Melia, T.J. Selective activation of cognate SNAREpins by Sec1/Munc18 proteins. Cell128, 183–195 (2007). ArticleCASPubMed Google Scholar
Khvotchev, M. et al. Dual modes of Munc18–1/SNARE interactions are coupled by functionally critical binding to syntaxin-1 N terminus. J. Neurosci.27, 12147–12155 (2007). ArticleCASPubMedPubMed Central Google Scholar
Burkhardt, P., Hattendorf, D.A., Weis, W.I. & Fasshauer, D. Munc18a controls SNARE assembly through its interaction with the syntaxin N-peptide. EMBO J.27, 923–933 (2008). ArticleCASPubMedPubMed Central Google Scholar
Medine, C.N., Rickman, C., Chamberlain, L.H. & Duncan, R.R. Munc18–1 prevents the formation of ectopic SNARE complexes in living cells. J. Cell Sci.120, 4407–4415 (2007). ArticleCASPubMed Google Scholar
Zilly, F.E., Sorensen, J.B., Jahn, R. & Lang, T. Munc18-bound syntaxin readily forms snare complexes with synaptobrevin in native plasma membranes. PLoS Biol.4, e330 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Gulyas-Kovacs, A. et al. Munc18–1: sequential interactions with the fusion machinery stimulate vesicle docking and priming. J. Neurosci.27, 8676–8686 (2007). ArticleCASPubMedPubMed Central Google Scholar
Tareste, D., Shen, J., Melia, T.J. & Rothman, J.E. SNAREpin/Munc18 promotes adhesion and fusion of large vesicles to giant membranes. Proc. Natl. Acad. Sci. USA105, 2380–2385 (2008). ArticleCASPubMedPubMed Central Google Scholar
Rizo, J. & Sudhof, T.C. C2-domains, structure and function of a universal Ca2+-binding domain. J. Biol. Chem.273, 15879–15882 (1998). ArticleCASPubMed Google Scholar
Dai, H. et al. Crystal structure of the RIM2 C2A-domain at 1.4 Å resolution. Biochemistry44, 13533–13542 (2005). ArticleCASPubMed Google Scholar
Guan, R. et al. Crystal structure of the RIM1α C2B domain at 1.7 Å resolution. Biochemistry46, 8988–8998 (2007). ArticleCASPubMed Google Scholar
Basu, J. et al. A minimal domain responsible for Munc13 activity. Nat. Struct. Mol. Biol.12, 1017–1018 (2005). ArticleCASPubMed Google Scholar
Richmond, J.E., Weimer, R.M. & Jorgensen, E.M. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature412, 338–341 (2001). Rescue experiments suggest that the function of Unc13/Munc13s in vesicle priming is at least in part to facilitate opening of the syntaxin-1 conformation. ArticleCASPubMedPubMed Central Google Scholar
Rosenmund, C. et al. Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron33, 411–424 (2002). This paper clearly establishes a role for Munc13s in short-term presynaptic plasticity. ArticleCASPubMed Google Scholar
Rhee, J.S. et al. Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell108, 121–133 (2002). ArticleCASPubMed Google Scholar
Basu, J., Betz, A., Brose, N. & Rosenmund, C. Munc13–1 C1 domain activation lowers the energy barrier for synaptic vesicle fusion. J. Neurosci.27, 1200–1210 (2007). ArticleCASPubMedPubMed Central Google Scholar
Junge, H.J. et al. Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity. Cell118, 389–401 (2004). ArticleCASPubMed Google Scholar
Kaeser, P.S. & Sudhof, T.C. RIM function in short- and long-term synaptic plasticity. Biochem. Soc. Trans.33, 1345–1349 (2005). ArticleCASPubMed Google Scholar
Schoch, S. et al. RIM1α forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature415, 321–326 (2002). Biochemical and functional experiments suggest that RIM1α provides a scaffold to organize the active zone and plays a role in short-term presynaptic plasticity in addition to controlling vesicle priming. ArticleCASPubMed Google Scholar
Betz, A. et al. Functional interaction of the active zone proteins Munc13–1 and RIM1 in synaptic vesicle priming. Neuron30, 183–196 (2001). ArticleCASPubMed Google Scholar
Castillo, P.E., Schoch, S., Schmitz, F., Sudhof, T.C. & Malenka, R.C. RIM1α is required for presynaptic long-term potentiation. Nature415, 327–330 (2002). ArticleCASPubMed Google Scholar
Castillo, P.E. et al. Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature388, 590–593 (1997). ArticleCASPubMed Google Scholar
Calakos, N., Schoch, S., Südhof, T.C. & Malenka, R.C. Multiple roles for the active zone protein RIM1α in late stages of neurotransmitter release. Neuron42, 889–896 (2004). ArticleCASPubMed Google Scholar
Ostermeier, C. & Brunger, A.T. Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Cell96, 363–374 (1999). ArticleCASPubMed Google Scholar
Sutton, R.B., Davletov, B.A., Berghuis, A.M., Sudhof, T.C. & Sprang, S.R. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell80, 929–938 (1995). ArticleCASPubMed Google Scholar
Ubach, J., Zhang, X., Shao, X., Sudhof, T.C. & Rizo, J. Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? EMBO J.17, 3921–3930 (1998). ArticleCASPubMedPubMed Central Google Scholar
Shao, X., Fernandez, I., Sudhof, T.C. & Rizo, J. Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? Biochemistry37, 16106–16115 (1998). ArticleCASPubMed Google Scholar
Fernandez, I. et al. Three-dimensional structure of the synaptotagmin 1 C2B-domain: synaptotagmin 1 as a phospholipid binding machine. Neuron32, 1057–1069 (2001). ArticleCASPubMed Google Scholar
Chapman, E.R. & Davis, A.F. Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J. Biol. Chem.273, 13995–14001 (1998). ArticleCASPubMed Google Scholar
Zhang, X., Rizo, J. & Sudhof, T.C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry37, 12395–12403 (1998). ArticleCASPubMed Google Scholar
Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature410, 41–49 (2001). A point mutation in synaptotagmin-1 causes a parallel decrease in its apparent Ca2+affinity and in the Ca2+sensitivity of release, leaving little doubt for the proposed role of synaptotagmin-1 as a Ca2+sensor in release. ArticleCASPubMed Google Scholar
Rhee, J.S. et al. Augmenting neurotransmitter release by enhancing the apparent Ca2+ affinity of synaptotagmin 1. Proc. Natl. Acad. Sci. USA102, 18664–18669 (2005). ArticleCASPubMedPubMed Central Google Scholar
Robinson, I.M., Ranjan, R. & Schwarz, T.L. Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain. Nature418, 336–340 (2002). ArticleCASPubMed Google Scholar
Mackler, J.M., Drummond, J.A., Loewen, C.A., Robinson, I.M. & Reist, N.E. The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo . Nature418, 340–344 (2002). A mutation in the Ca2+binding sites of the synaptotagmin-1 C2B domain causes a dramatic impairment in neurotransmitter release, showing the crucial importance of Ca2+binding to the C2B domain for release. ArticleCASPubMed Google Scholar
Arac, D. et al. Close membrane-membrane proximity induced by Ca(2+)-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat. Struct. Mol. Biol.13, 209–217 (2006). The observation of simultaneous binding of synaptotagmin-1 to two membranes suggests that this Ca2+sensor functions by bringing the vesicle and plasma membranes into close proximity, similar to the SNAREs but in a Ca2+-dependent manner. ArticleCASPubMed Google Scholar
Arac, D., Murphy, T. & Rizo, J. Facile detection of protein-protein interactions by one-dimensional NMR spectroscopy. Biochemistry42, 2774–2780 (2003). ArticleCASPubMed Google Scholar
Bhalla, A., Chicka, M.C., Tucker, W.C. & Chapman, E.R. Ca2+-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion. Nat. Struct. Mol. Biol.13, 323–330 (2006). ArticleCASPubMed Google Scholar
Dai, H., Shen, N., Arac, D. & Rizo, J.A. Quaternary SNARE-synaptotagmin-Ca(2+)-phospholipid complex in neurotransmitter release. J. Mol. Biol.367, 848–863 (2007). ArticleCASPubMedPubMed Central Google Scholar
Bowen, M.E., Weninger, K., Ernst, J., Chu, S. & Brunger, A.T. Single-molecule studies of synaptotagmin and complexin binding to the SNARE complex. Biophys. J.89, 690–702 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zimmerberg, J., Akimov, S.A. & Frolov, V. Synaptotagmin: fusogenic role for calcium sensor? Nat. Struct. Mol. Biol.13, 301–303 (2006). ArticleCASPubMed Google Scholar
Lynch, K.L. et al. Synaptotagmin C2A loop 2 mediates Ca2+-dependent SNARE interactions essential for Ca2+-triggered vesicle exocytosis. Mol. Biol. Cell18, 4957–4968 (2007). ArticleCASPubMedPubMed Central Google Scholar
Martens, S., Kozlov, M.M. & McMahon, H.T. How synaptotagmin promotes membrane fusion. Science316, 1205–1208 (2007). ArticleCASPubMed Google Scholar
Tucker, W.C., Weber, T. & Chapman, E.R. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science304, 435–438 (2004). ArticleCASPubMed Google Scholar
Stein, A., Radhakrishnan, A., Riedel, D., Fasshauer, D. & Jahn, R. Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids. Nat. Struct. Mol. Biol.14, 904–911 (2007). ArticleCASPubMed Google Scholar
Pabst, S. et al. Selective interaction of complexin with the neuronal SNARE complex. Determination of the binding regions. J. Biol. Chem.275, 19808–19818 (2000). ArticleCASPubMed Google Scholar
McMahon, H.T., Missler, M., Li, C. & Sudhof, T.C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell83, 111–119 (1995). ArticleCASPubMed Google Scholar
Giraudo, C.G., Eng, W.S., Melia, T.J. & Rothman, J.E. A clamping mechanism involved in SNARE-dependent exocytosis. Science313, 676–680 (2006). ArticleCASPubMed Google Scholar
Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K. & McNew, J.A. Hemifusion arrest by complexin is relieved by Ca2+–synaptotagmin I. Nat. Struct. Mol. Biol.13, 748–750 (2006). ArticleCASPubMed Google Scholar
Tang, J. et al. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell126, 1175–1187 (2006). ArticleCASPubMed Google Scholar
Huntwork, S. & Littleton, J.T. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat. Neurosci.10, 1235–1237 (2007). ArticleCASPubMed Google Scholar
Reim, K. et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell104, 71–81 (2001). Complexins I and II are shown to play a critical active role in the Ca2+-triggered step of neurotransmitter release. ArticleCASPubMed Google Scholar
Roggero, C.M. et al. Complexin/synaptotagmin interplay controls acrosomal exocytosis. J. Biol. Chem.282, 26335–26343 (2007). ArticleCASPubMed Google Scholar
Xue, M. et al. Distinct domains of complexin I differentially regulate neurotransmitter release. Nat. Struct. Mol. Biol.14, 949–958 (2007). ArticleCASPubMedPubMed Central Google Scholar
Fuson, K.L., Montes, M., Robert, J.J. & Sutton, R.B. Structure of human synaptotagmin 1 C2AB in the absence of Ca2+ reveals a novel domain association. Biochemistry46, 13041–13048 (2007). ArticleCASPubMed Google Scholar