A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P (original) (raw)

References

  1. Schimmel, P. Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu. Rev. Biochem. 56, 125–158 (1987).
    Article CAS Google Scholar
  2. Ibba, M. & Söll, D. Aminoacyl-tRNA synthesis. Annu. Rev. Biochem. 69, 617–650 (2000).
    Article CAS Google Scholar
  3. Eriani, G., Delarue, M., Poch, O., Gangloff, J. & Moras, D. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347, 203–206 (1990).
    Article CAS Google Scholar
  4. Cusack, S., Berthet-Colominas, C., Hartlein, M., Nassar, N. & Leberman, R. A second class of synthetase structure revealed by X-ray analysis of Escherichia coli seryl-tRNA synthetase at 2.5 Å. Nature 347, 249–255 (1990).
    Article CAS Google Scholar
  5. Roy, H., Becker, H.D., Reinbolt, J. & Kern, D. When contemporary aminoacyl-tRNA synthetases invent their cognate amino acid metabolism. Proc. Natl. Acad. Sci. USA 100, 9837–9842 (2003).
    Article CAS Google Scholar
  6. Sissler, M. et al. An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis. Proc. Natl. Acad. Sci. USA 96, 8985–8990 (1999).
    Article CAS Google Scholar
  7. Artymiuk, P.J., Rice, D.W., Poirrette, A.R. & Willet, P. A tale of two synthetases. Nat. Struct. Biol. 1, 758 (1994).
    Article CAS Google Scholar
  8. Salazar, J.C., Ambrogelly, A., Crain, P.F., McCloskey, J.A. & Söll, D. A truncated aminoacyl-tRNA synthetase modifies RNA. Proc. Natl. Acad. Sci. USA 101, 7536–7541 (2004).
    Article CAS Google Scholar
  9. Dubois, D.Y. et al. An aminoacyl-tRNA synthetase-like protein encoded by the Escherichia coli yadB gene glutamylates specifically tRNAAsp. Proc. Natl. Acad. Sci. USA 101, 7530–7535 (2004).
    Article CAS Google Scholar
  10. Ahel, I., Korencic, D., Ibba, M. & Söll, D. Trans-editing of mischarged tRNAs. Proc. Natl. Acad. Sci. USA 100, 15422–15427 (2003).
    Article CAS Google Scholar
  11. An, S. & Musier-Forsyth, K. Trans-editing of Cys-tRNAPro by Haemophilus influenzae YbaK protein. J. Biol. Chem. 41, 42359–42362 (2004).
    Article Google Scholar
  12. Kong, L., Fromant, M., Blanquet, S. & Plateau, P. Evidence for a new Escherichia coli protein resembling a lysyl-tRNA synthetase. Gene 108, 163–164 (1991).
    Article CAS Google Scholar
  13. Kaniga, K., Compton, M.S., Curtiss, R. III & Sundaram, P. Molecular and functional characterization of Salmonella enterica serovar typhimurium poxA gene: effect on attenuation of virulence and protection. Infect. Immunol. 66, 5599–5606 (1998).
    CAS Google Scholar
  14. Peng, W.T., Banta, L.H., Charles, T.C. & Nester, E.W. The chvH locus of Agrobacterium encodes a homologue of an elongation factor involved in protein synthesis. J. Bacteriol. 183, 36–45 (2001).
    Article CAS Google Scholar
  15. Bailly, M. & de Crécy-Lagard, V. Predicting the pathway involved in post-translational modification of elongation factor P in a subset of bacterial species. Biol. Direct 5, 3 (2010).
    Article Google Scholar
  16. Kang, Y. et al. Systematic mutagenesis of the Escherichia coli genome. J. Bacteriol. 186, 4921–4930 (2004).
    Article CAS Google Scholar
  17. Hanawa-Suetsugu, K. et al. Crystal structure of elongation factor P from Thermus thermophilus HB8. Proc. Natl. Acad. Sci. USA 101, 9595–9600 (2004).
    Article Google Scholar
  18. Blaha, G., Stanley, R.E. & Steitz, T.A. Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome. Science 325, 966–970 (2009).
    Article CAS Google Scholar
  19. Glick, B.R. & Ganoza, M.C. Identification of a soluble protein that stimulates peptide bond synthesis. Proc. Natl. Acad. Sci. USA 72, 4257–4260 (1975).
    Article CAS Google Scholar
  20. Glick, B.R. & Ganoza, M.C. Peptide bond formation stimulated by protein synthesis factor EF-P depends on the aminoacyl moiety of the acceptor. Eur. J. Biochem. 97, 23–28 (1979).
    Article CAS Google Scholar
  21. Ganoza, M.C., Kiel, M.C. & Aoki, H. Evolutionary conservation of reactions in translation. Microbiol. Mol. Biol. Rev. 66, 460–485 (2002).
    Article CAS Google Scholar
  22. Eiler, S., Dock-Bregeon, A., Moulinier, L., Thierry, J.C. & Moras, D. Synthesis of aspartyl-tRNA(Asp) in _Escherichia coli_–a snapshot of the second step. EMBO J. 18, 6532–6541 (1999).
    Article CAS Google Scholar
  23. Aoki, H. et al. Interaction of elongation factor P with the Escherichia coli ribosome. FEBS J. 275, 671–681 (2008).
    Article CAS Google Scholar
  24. Saini, P., Eyler, D.E., Green, R. & Dever, T.E. Hypusine-containing protein eIF5A promotes translation elongation. Nature 459, 118–121 (2009).
    Article CAS Google Scholar
  25. Sasaki, K., Abid, M.R. & Miyazaki, M. Deoxyhypusine synthase gene is essential for cell viability in the yeast Saccharomyces cerevisiae . FEBS Lett. 384, 151–154 (1996).
    Article CAS Google Scholar
  26. Park, M.H. The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J. Biochem. 139, 161–169 (2006).
    Article CAS Google Scholar
  27. Wolff, E.C., Kang, K.R., Kim, Y.S. & Park, M.H. Posttranslational synthesis of hypusine: evolutionary progression and specificity of the hypusine modification. Amino Acids 33, 341–350 (2007).
    Article CAS Google Scholar
  28. Smit-McBride, Z., Dever, T.E., Hershey, J.W. & Merrick, W.C. Sequence determination and cDNA cloning of eukaryotic initiation factor 4D, the hypusine-containing protein. J. Biol. Chem. 264, 1578–1583 (1989).
    CAS PubMed Google Scholar
  29. Bartig, D., Lemkemeier, K., Frank, J., Lottspeich, F. & Klink, F. The archaebacterial hypusine-containing protein. Structural features suggest common ancestry with eukaryotic translation initiation factor 5A. Eur. J. Biochem. 204, 751–758 (1992).
    Article CAS Google Scholar
  30. Holm, L., Kaariainen, S., Rosenstrom, P. & Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780–2781 (2008).
    Article CAS Google Scholar
  31. Onesti, S., Miller, A.D. & Brick, P. The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli . Structure 3, 163–176 (1995).
    Article CAS Google Scholar
  32. Desogus, G., Todone, F., Brick, P. & Onesti, S. Active site of lysyl-tRNA synthetase: structural studies of the adenylation reaction. Biochemistry 39, 8418–8425 (2000).
    Article CAS Google Scholar
  33. Cusack, S., Yaremchuk, A. & Tukalo, M. The crystal structures of T. thermophilus lysyl-tRNA synthetase complexed with E. coli tRNA(Lys) and a T. thermophilus tRNA(Lys) transcript: anticodon recognition and conformational changes upon binding of a lysyl-adenylate analogue. EMBO J. 15, 6321–6334 (1996).
    Article CAS Google Scholar
  34. Cusack, S., Yaremchuk, A. & Tukalo, M. The crystal structure of the ternary complex of T. thermophilus seryl-tRNA synthetase with tRNA(Ser) and a seryl-adenylate analogue reveals a conformational switch in the active site. EMBO J. 15, 2834–2842 (1996).
    Article CAS Google Scholar
  35. Nozawa, K. et al. Pyrrolysyl-tRNA(Pyl) structure reveals the molecular basis of orthogonality. Nature 457, 1163–1167 (2009).
    Article CAS Google Scholar
  36. Watanabe, K. et al. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase. Nature 449, 867–871 (2008).
    Article Google Scholar
  37. Behshad, E. et al. Enantiomeric free radicals and enzymatic control of stereochemistry in a radical mechanism: the case of lysine 2,3-aminomutases. Biochemistry 45, 12639–12646 (2006).
    Article CAS Google Scholar
  38. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. published online 21 February 2006, doi:10.1038/msb4100050.
  39. Rucker, R.B. & Wold, F. Cofactors in and as posttranslational protein modifications. FASEB J. 2, 2252–2261 (1988).
    Article CAS Google Scholar
  40. Reche, P. & Perham, R.N. Structure and selectivity in post-translational modification: attaching the biotinyl–lysine and lipoyl–lysine swinging arms in multifunctional enzymes. EMBO J. 18, 2673–2682 (1999).
    Article CAS Google Scholar
  41. Safro, M. & Mosyak, L. Structural similarities in the noncatalytic domains of phenylalanyl-tRNA and biotin synthetases. Protein Sci. 4, 2429–2432 (1995).
    Article CAS Google Scholar
  42. Xu, A. & Chen, K.Y. Hypusine is required for a sequence-specific interaction of eukaryotic initiation factor 5A with postsystematic evolution of ligands by exponential enrichment RNA. J. Biol. Chem. 276, 2555–2561 (2001).
    Article CAS Google Scholar
  43. Wagner, S. & Klug, G. An archaeal protein with homology to the eukaryotic translation initiation factor 5A shows ribonucleolytic activity. J. Biol. Chem. 282, 13966–13976 (2007).
    Article CAS Google Scholar
  44. Nakamura, Y. & Ito, K. Making sense of mimic in translation termination. Trends Biochem. Sci. 28, 99–105 (2003).
    Article CAS Google Scholar
  45. Rawat, U.B. et al. A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421, 87–90 (2003).
    Article CAS Google Scholar
  46. Klaholz, B.P. et al. Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421, 90–94 (2003).
    Article CAS Google Scholar
  47. Petry, S. et al. Crystal structures of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon. Cell 123, 1255–1266 (2005).
    Article CAS Google Scholar
  48. Wilson, D.N. et al. X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J. 24, 251–260 (2005).
    Article CAS Google Scholar
  49. Weixlbaumer, A. et al. Crystal structure of the ribosome recycling factor bound to the ribosome. Nat. Struct. Mol. Biol. 14, 733–737 (2007).
    Article CAS Google Scholar
  50. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
    Article CAS Google Scholar
  51. Page, R.D. Visualizing phylogenetic trees using Treeview. Curr. Protoc. Bioimformatics Chapter 6, Unit 6.2 (2002).
  52. Collaborative Computational Project Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).
  53. Terwilliger, T.C. & Berendzen, J. SOLVE and RESOLVE: automated structure solution and density modification. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (2002).
    Article Google Scholar
  54. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).
    Article Google Scholar
  55. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
    Article Google Scholar
  56. Brünger, A.T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).
    Article Google Scholar
  57. Steiner, R.A., Lebedev, A.A. & Murshudov, G.N. Fisher's information in maximum-likelihood macromolecular crystallographic refinement. Acta Crystallogr. D Biol. Crystallogr. 59, 2114–2124 (2003).
    Article Google Scholar
  58. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).
    Article Google Scholar
  59. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).
    Article CAS Google Scholar

Download references