Recognition and maturation of effector RNAs in a CRISPR interference pathway (original) (raw)

References

  1. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433 (1987).
    Article CAS PubMed PubMed Central Google Scholar
  2. Nakata, A., Amemura, M. & Makino, K. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J. Bacteriol. 171, 3553–3556 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  3. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).
    Article CAS PubMed Google Scholar
  4. Brouns, S.J. et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321, 960–964 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  5. Carte, J., Wang, R., Li, H., Terns, R.M. & Terns, M.P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22, 3489–3496 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  6. Jansen, R., Embden, J.D., Gaastra, W. & Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565–1575 (2002).
    Article CAS PubMed Google Scholar
  7. Marraffini, L.A. & Sontheimer, E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322, 1843–1845 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  8. Haft, D.H., Selengut, J., Mongodin, E.F. & Nelson, K.E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 1, e60 (2005).
    Article PubMed PubMed Central Google Scholar
  9. Kunin, V., Sorek, R. & Hugenholtz, P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol. 8, R61 (2007).
    Article PubMed PubMed Central Google Scholar
  10. Makarova, K.S., Grishin, N., Shabalina, S., Wolf, Y. & Koonin, E. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct 1, 7–33 (2006).
    Article PubMed PubMed Central Google Scholar
  11. Grissa, I., Vergnaud, G. & Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8, 172–182 (2007).
    Article PubMed PubMed Central Google Scholar
  12. Agari, Y. et al. Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J. Mol. Biol. 395, 270–281 (2010).
    Article CAS PubMed Google Scholar
  13. Wiedenheft, B. et al. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17, 904–912 (2009).
    Article CAS PubMed Google Scholar
  14. Han, D. & Krauss, G. Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2. FEBS Lett. 583, 771–776 (2009).
    Article CAS PubMed Google Scholar
  15. Pougach, K. et al. Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol. Microbiol. 77, 1367–1379 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  16. Xue, S., Calvin, K. & Li, H. RNA recognition and cleavage by a splicing endonuclease. Science 312, 906–910 (2006).
    Article CAS PubMed Google Scholar
  17. Calvin, K., Xue, S., Ellis, C., Mitchell, M. & Li, H. Probing the catalytic triad of an archaeal RNA splicing endonuclease. Biochemistry 47, 13659–13665 (2008).
    Article CAS PubMed Google Scholar
  18. Ebihara, A. et al. Crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 reveals a new protein family with an RNA recognition motif-like domain. Protein Sci. 15, 1494–1499 (2006).
    Article CAS PubMed PubMed Central Google Scholar
  19. Haurwitz, R.E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  20. Deo, R.C., Bonanno, J.B., Sonenberg, N. & Burley, S.K. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98, 835–845 (1999).
    Article CAS PubMed Google Scholar
  21. Handa, N. et al. Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature 398, 579–585 (1999).
    Article CAS PubMed Google Scholar
  22. Wang, R., Preamplume, G., Terns, M.P., Terns, R.M. & Li, H. Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure 19, 257–264 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  23. Schmidt, B.H., Burgin, A.B., Deweese, J.W., Osheroff, N. & Berger, J.M. A novel and unified two-metal mechanism for DNA cleavage by type II and IA topoisomerases. Nature 465, 641–644 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  24. Guillén Schlippe, Y.V. & Hedstrom, L. A twisted base? The role of arginine in enzyme-catalyzed proton abstractions. Arch. Biochem. Biophys. 433, 266–278 (2005).
    Article PubMed Google Scholar
  25. Steitz, T.A. & Steitz, J.A. A general two-metal ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. USA 90, 6498–6502 (1993).
    Article CAS PubMed PubMed Central Google Scholar
  26. Igloi, G.L. & Kossel, H. Affinity electrophoresis for monitoring terminal phosphorylation and the presence of queuosine in RNA. Application of polyacrylamide containing a covalently bound boronic acid. Nucleic Acids Res. 13, 6881–6898 (1985).
    Article CAS PubMed PubMed Central Google Scholar
  27. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
    Article CAS PubMed Google Scholar
  28. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
    Article PubMed Google Scholar
  29. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).
    Article CAS PubMed Google Scholar
  30. Read, R.J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D Biol. Crystallogr. 57, 1373–1382 (2001).
    Article CAS PubMed Google Scholar
  31. Lovell, S.C. et al. Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins 50, 437–450 (2003).
    Article CAS PubMed Google Scholar

Download references