Recognition and maturation of effector RNAs in a CRISPR interference pathway (original) (raw)
References
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol.169, 5429–5433 (1987). ArticleCASPubMedPubMed Central Google Scholar
Nakata, A., Amemura, M. & Makino, K. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J. Bacteriol.171, 3553–3556 (1989). ArticleCASPubMedPubMed Central Google Scholar
Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science315, 1709–1712 (2007). ArticleCASPubMed Google Scholar
Carte, J., Wang, R., Li, H., Terns, R.M. & Terns, M.P. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev.22, 3489–3496 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jansen, R., Embden, J.D., Gaastra, W. & Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol.43, 1565–1575 (2002). ArticleCASPubMed Google Scholar
Marraffini, L.A. & Sontheimer, E.J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science322, 1843–1845 (2008). ArticleCASPubMedPubMed Central Google Scholar
Haft, D.H., Selengut, J., Mongodin, E.F. & Nelson, K.E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol.1, e60 (2005). ArticlePubMedPubMed Central Google Scholar
Kunin, V., Sorek, R. & Hugenholtz, P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol.8, R61 (2007). ArticlePubMedPubMed Central Google Scholar
Makarova, K.S., Grishin, N., Shabalina, S., Wolf, Y. & Koonin, E. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct1, 7–33 (2006). ArticlePubMedPubMed Central Google Scholar
Grissa, I., Vergnaud, G. & Pourcel, C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics8, 172–182 (2007). ArticlePubMedPubMed Central Google Scholar
Agari, Y. et al. Transcription profile of Thermus thermophilus CRISPR systems after phage infection. J. Mol. Biol.395, 270–281 (2010). ArticleCASPubMed Google Scholar
Wiedenheft, B. et al. Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure17, 904–912 (2009). ArticleCASPubMed Google Scholar
Han, D. & Krauss, G. Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2. FEBS Lett.583, 771–776 (2009). ArticleCASPubMed Google Scholar
Pougach, K. et al. Transcription, processing and function of CRISPR cassettes in Escherichia coli. Mol. Microbiol.77, 1367–1379 (2010). ArticleCASPubMedPubMed Central Google Scholar
Xue, S., Calvin, K. & Li, H. RNA recognition and cleavage by a splicing endonuclease. Science312, 906–910 (2006). ArticleCASPubMed Google Scholar
Calvin, K., Xue, S., Ellis, C., Mitchell, M. & Li, H. Probing the catalytic triad of an archaeal RNA splicing endonuclease. Biochemistry47, 13659–13665 (2008). ArticleCASPubMed Google Scholar
Ebihara, A. et al. Crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 reveals a new protein family with an RNA recognition motif-like domain. Protein Sci.15, 1494–1499 (2006). ArticleCASPubMedPubMed Central Google Scholar
Haurwitz, R.E., Jinek, M., Wiedenheft, B., Zhou, K. & Doudna, J. Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science329, 1355–1358 (2010). ArticleCASPubMedPubMed Central Google Scholar
Deo, R.C., Bonanno, J.B., Sonenberg, N. & Burley, S.K. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell98, 835–845 (1999). ArticleCASPubMed Google Scholar
Handa, N. et al. Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature398, 579–585 (1999). ArticleCASPubMed Google Scholar
Wang, R., Preamplume, G., Terns, M.P., Terns, R.M. & Li, H. Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure19, 257–264 (2011). ArticleCASPubMedPubMed Central Google Scholar
Schmidt, B.H., Burgin, A.B., Deweese, J.W., Osheroff, N. & Berger, J.M. A novel and unified two-metal mechanism for DNA cleavage by type II and IA topoisomerases. Nature465, 641–644 (2010). ArticleCASPubMedPubMed Central Google Scholar
Guillén Schlippe, Y.V. & Hedstrom, L. A twisted base? The role of arginine in enzyme-catalyzed proton abstractions. Arch. Biochem. Biophys.433, 266–278 (2005). ArticlePubMed Google Scholar
Igloi, G.L. & Kossel, H. Affinity electrophoresis for monitoring terminal phosphorylation and the presence of queuosine in RNA. Application of polyacrylamide containing a covalently bound boronic acid. Nucleic Acids Res.13, 6881–6898 (1985). ArticleCASPubMedPubMed Central Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCASPubMed Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). ArticlePubMed Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr.53, 240–255 (1997). ArticleCASPubMed Google Scholar
Read, R.J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D Biol. Crystallogr.57, 1373–1382 (2001). ArticleCASPubMed Google Scholar
Lovell, S.C. et al. Structure validation by Cα geometry: ϕ,ψ and Cβ deviation. Proteins50, 437–450 (2003). ArticleCASPubMed Google Scholar