Perry, J.J., Tainer, J.A. & Boddy, M.N. A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem. Sci.33, 201–208 (2008). ArticleCASPubMed Google Scholar
Kosoy, A., Calonge, T.M., Outwin, E.A. & O'Connell, M.J. Fission yeast Rnf4 homologs are required for DNA repair. J. Biol. Chem.282, 20388–20394 (2007). ArticleCASPubMed Google Scholar
Sun, H., Leverson, J.D. & Hunter, T. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J.26, 4102–4112 (2007). ArticleCASPubMedPubMed Central Google Scholar
Uzunova, K. et al. Ubiquitin-dependent proteolytic control of SUMO conjugates. J. Biol. Chem.282, 34167–34175 (2007). ArticleCASPubMed Google Scholar
Xie, Y. et al. The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J. Biol. Chem.282, 34176–34184 (2007). ArticleCASPubMed Google Scholar
Lallemand-Breitenbach, V. et al. Arsenic degrades PML or PML-RARα through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat. Cell Biol.10, 547–555 (2008). ArticleCASPubMed Google Scholar
Tatham, M.H. et al. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat. Cell Biol.10, 538–546 (2008). ArticleCASPubMed Google Scholar
Song, J., Durrin, L.K., Wilkinson, T.A., Krontiris, T.G. & Chen, Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. USA101, 14373–14378 (2004). ArticleCASPubMedPubMed Central Google Scholar
Hecker, C.M., Rabiller, M., Haglund, K., Bayer, P. & Dikic, I. Specification of SUMO1- and SUMO2-interacting motifs. J. Biol. Chem.281, 16117–16127 (2006). ArticleCASPubMed Google Scholar
Song, J., Zhang, Z., Hu, W. & Chen, Y. Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J. Biol. Chem.280, 40122–40129 (2005). ArticleCASPubMed Google Scholar
Liew, C.W., Sun, H., Hunter, T. & Day, C.L. RING domain dimerization is essential for RNF4 function. Biochem. J.431, 23–29 (2010). ArticleCASPubMed Google Scholar
Mace, P.D. et al. Structures of the cIAP2 RING domain reveal conformational changes associated with ubiquitin-conjugating enzyme (E2) recruitment. J. Biol. Chem.283, 31633–31640 (2008). ArticleCASPubMed Google Scholar
Linke, K. et al. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ.15, 841–848 (2008). ArticleCASPubMed Google Scholar
Vander Kooi, C.W. et al. The Prp19 U-box crystal structure suggests a common dimeric architecture for a class of oligomeric E3 ubiquitin ligases. Biochemistry45, 121–130 (2006). ArticleCASPubMed Google Scholar
Sakata, E. et al. Crystal structure of UbcH5b~ubiquitin intermediate: insight into the formation of the self-assembled E2~Ub conjugates. Structure18, 138–147 (2010). ArticleCASPubMed Google Scholar
Dikic, I., Wakatsuki, S. & Walters, K.J. Ubiquitin-binding domains—from structures to functions. Nat. Rev. Mol. Cell Biol.10, 659–671 (2009). ArticleCASPubMedPubMed Central Google Scholar
Lee, S. et al. Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Nat. Struct. Mol. Biol.13, 264–271 (2006). ArticleCASPubMedPubMed Central Google Scholar
Penengo, L. et al. Crystal structure of the ubiquitin binding domains of rabex-5 reveals two modes of interaction with ubiquitin. Cell124, 1183–1195 (2006). ArticleCASPubMed Google Scholar
Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell136, 1098–1109 (2009). ArticleCASPubMed Google Scholar
Mastrandrea, L.D., Kasperek, E.M., Niles, E.G. & Pickart, C.M. Core domain mutation (S86Y) selectively inactivates polyubiquitin chain synthesis catalyzed by E2–25K. Biochemistry37, 9784–9792 (1998). ArticleCASPubMed Google Scholar
Brzovic, P.S., Lissounov, A., Christensen, D.E., Hoyt, D.W. & Klevit, R.E.A. UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol. Cell21, 873–880 (2006). ArticleCASPubMed Google Scholar
Christensen, D.E., Brzovic, P.S. & Klevit, R.E. E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat. Struct. Mol. Biol.14, 941–948 (2007). ArticleCASPubMed Google Scholar
Kleiger, G., Saha, A., Lewis, S., Kuhlman, B. & Deshaies, R.J. Rapid E2–E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates. Cell139, 957–968 (2009). ArticleCASPubMedPubMed Central Google Scholar
Pierce, N.W., Kleiger, G., Shan, S.O. & Deshaies, R.J. Detection of sequential polyubiquitylation on a millisecond timescale. Nature462, 615–619 (2009). ArticleCASPubMedPubMed Central Google Scholar
Brzovic, P.S., Rajagopal, P., Hoyt, D.W., King, M.C. & Klevit, R.E. Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat. Struct. Biol.8, 833–837 (2001). ArticleCASPubMed Google Scholar
Buchwald, G. et al. Structure and E3-ligase activity of the Ring-Ring complex of Polycomb proteins Bmi1 and Ring1b. EMBO J.25, 2465–2474 (2006). ArticleCASPubMedPubMed Central Google Scholar
Xu, Z. et al. Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes. BMC Struct. Biol.8, 26 (2008). ArticlePubMedPubMed Central Google Scholar
Zhang, M. et al. Chaperoned ubiquitylation—crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell20, 525–538 (2005). ArticleCASPubMed Google Scholar
Kamadurai, H.B. et al. Insights into ubiquitin transfer cascades from a structure of a UbcH5B~ubiquitin-HECT(NEDD4L) complex. Mol. Cell36, 1095–1102 (2009). ArticleCASPubMedPubMed Central Google Scholar
Levin, I. et al. Identification of an unconventional E3 binding surface on the UbcH5~Ub conjugate recognized by a pathogenic bacterial E3 ligase. Proc. Natl. Acad. Sci. USA107, 2848–2853 (2010). ArticleCASPubMedPubMed Central Google Scholar
Pruneda, J.N., Stoll, K.E., Bolton, L.J., Brzovic, P.S. & Klevit, R.E. Ubiquitin in motion: structural studies of the ubiquitin-conjugating enzyme~ubiquitin conjugate. Biochemistry50, 1624–1633 (2011). ArticleCASPubMed Google Scholar
Wickliffe, K.E., Lorenz, S., Wemmer, D.E., Kuriyan, J. & Rape, M. The mechanism of linkage-specific ubiquitin chain elongation by a single-subunit E2. Cell144, 769–781 (2011). ArticleCASPubMedPubMed Central Google Scholar
Saha, A., Lewis, S., Kleiger, G., Kuhlman, B. & Deshaies, R.J. Essential role for ubiquitin-ubiquitin-conjugating enzyme interaction in ubiquitin discharge from Cdc34 to substrate. Mol. Cell42, 75–83 (2011). ArticleCASPubMedPubMed Central Google Scholar
Martin, S.F., Tatham, M.H., Hay, R.T. & Samuel, I.D. Quantitative analysis of multi-protein interactions using FRET: application to the SUMO pathway. Protein Sci.17, 777–784 (2008). ArticleCASPubMedPubMed Central Google Scholar
Martin, S.F., Hattersley, N., Samuel, I.D., Hay, R.T. & Tatham, M.H. A fluorescence-resonance-energy-transfer-based protease activity assay and its use to monitor paralog-specific small ubiquitin-like modifier processing. Anal. Biochem.363, 83–90 (2007). ArticleCASPubMed Google Scholar
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol.276, 307–326 (1997). ArticleCASPubMed Google Scholar
Morris, R.J., Perrakis, A. & Lamzin, V.S. ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol.374, 229–244 (2003). ArticleCASPubMed Google Scholar
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr.53, 240–255 (1997). ArticleCASPubMed Google Scholar
Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr.66, 486–501 (2010). ArticleCASPubMedPubMed Central Google Scholar
Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr.57, 122–133 (2001). ArticleCASPubMed Google Scholar
Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res.35, W375–83 (2007). ArticlePubMedPubMed Central Google Scholar
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol.372, 774–797 (2007). ArticleCASPubMed Google Scholar