Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum (original) (raw)

References

  1. Lilley, B.N. & Ploegh, H.L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429, 834–840 (2004).
    Article CAS Google Scholar
  2. Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T.A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841–847 (2004).
    Article CAS Google Scholar
  3. Younger, J.M. et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell 126, 571–582 (2006).
    Article CAS Google Scholar
  4. Oda, Y. et al. Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J. Cell Biol. 172, 383–393 (2006).
    Article CAS Google Scholar
  5. Knop, M., Finger, A., Braun, T., Hellmuth, K. & Wolf, D.H. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J. 15, 753–763 (1996).
    Article CAS Google Scholar
  6. Taxis, C. et al. Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J. Biol. Chem. 278, 35903–35913 (2003).
    Article CAS Google Scholar
  7. Carvalho, P., Goder, V. & Rapoport, T.A. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126, 361–373 (2006).
    Article CAS Google Scholar
  8. Hitt, R. & Wolf, D.H. Der1p, a protein required for degradation of malfolded soluble proteins of the endoplasmic reticulum: topology and Der1-like proteins. FEMS. Yeast Res. 4, 721–729 (2004).
    Article CAS Google Scholar
  9. Sato, B.K. & Hampton, R.Y. Yeast Derlin Dfm1 interacts with Cdc48 and functions in ER homeostasis. Yeast 23, 1053–1064 (2006).
    Article CAS Google Scholar
  10. Stolz, A., Schweizer, R.S., Schafer, A. & Wolf, D.H. Dfm1 forms distinct complexes with Cdc48 and the ER ubiquitin ligases and is required for ERAD. Traffic 11, 1363–1369 (2010).
    Article CAS Google Scholar
  11. Lilley, B.N. & Ploegh, H.L. Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc. Natl. Acad. Sci. USA 102, 14296–14301 (2005).
    Article CAS Google Scholar
  12. Ye, Y. et al. Inaugural Article: Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc. Natl. Acad. Sci. USA 102, 14132–14138 (2005).
    Article CAS Google Scholar
  13. Carvalho, P., Stanley, A.M. & Rapoport, T.A. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell 143, 579–591 (2010).
    Article CAS Google Scholar
  14. Wahlman, J. et al. Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system. Cell 129, 943–955 (2007).
    Article CAS Google Scholar
  15. Freeman, M. Rhomboid proteases and their biological functions. Annu. Rev. Genet. 42, 191–210 (2008).
    Article CAS Google Scholar
  16. Urban, S., Lee, J.R. & Freeman, M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173–182 (2001).
    Article CAS Google Scholar
  17. Urban, S., Lee, J.R. & Freeman, M. A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands. EMBO J. 21, 4277–4286 (2002).
    Article CAS Google Scholar
  18. McQuibban, G.A., Saurya, S. & Freeman, M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423, 537–541 (2003).
    Article CAS Google Scholar
  19. Wang, Y., Zhang, Y. & Ha, Y. Crystal structure of a rhomboid family intramembrane protease. Nature 444, 179–180 (2006).
    Article CAS Google Scholar
  20. Lemberg, M.K. & Freeman, M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res. 17, 1634–1646 (2007).
    Article CAS Google Scholar
  21. Kelley, L.A. & Sternberg, M.J.E. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371 (2009).
    Article CAS Google Scholar
  22. Lemberg, M.K. et al. Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J. 24, 464–472 (2005).
    Article CAS Google Scholar
  23. Urban, S. & Wolfe, M.S. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl. Acad. Sci. USA 102, 1883–1888 (2005).
    Article CAS Google Scholar
  24. Urban, S., Schlieper, D. & Freeman, M. Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr. Biol. 12, 1507–1512 (2002).
    Article CAS Google Scholar
  25. Maegawa, S., Ito, K. & Akiyama, Y. Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane. Biochemistry 44, 13543–13552 (2005).
    Article CAS Google Scholar
  26. Baker, R.P., Young, K., Feng, L., Shi, Y. & Urban, S. Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate. Proc. Natl. Acad. Sci. USA 104, 8257–8262 (2007).
    Article CAS Google Scholar
  27. Söding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).
    Article Google Scholar
  28. Stevenson, L.G. et al. Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc. Natl. Acad. Sci. USA 104, 1003–1008 (2007).
    Article CAS Google Scholar
  29. Zhou, X.W., Blackman, M.J., Howell, S.A. & Carruthers, V.B. Proteomic analysis of cleavage events reveals a dynamic two-step mechanism for proteolysis of a key parasite adhesive complex. Mol. Cell. Proteomics 3, 565–576 (2004).
    Article CAS Google Scholar
  30. Brossier, F., Jewett, T.J., Sibley, L.D. & Urban, S. A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc. Natl. Acad. Sci. USA 102, 4146–4151 (2005).
    Article CAS Google Scholar
  31. Wu, Z. et al. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat. Struct. Mol. Biol. 13, 1084–1091 (2006).
    Article CAS Google Scholar
  32. Bondar, A.-N., del Val, C. & White, S.H. Rhomboid protease dynamics and lipid interactions. Structure 17, 395–405 (2009).
    Article CAS Google Scholar
  33. Wang, Y., Maegawa, S., Akiyama, Y. & Ha, Y. The role of L1 loop in the mechanism of rhomboid intramembrane protease GlpG. J. Mol. Biol. 374, 1104–1113 (2007).
    Article CAS Google Scholar
  34. Urban, S. & Baker, R.P. In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells. Biol. Chem. 389, 1107–1115 (2008).
    Article CAS Google Scholar
  35. von Heijne, G. & Gavel, Y. Topogenic signals in integral membrane proteins. Eur. J. Biochem. 174, 671–678 (1988).
    Article CAS Google Scholar
  36. Jeyaraju, D.V., McBride, H.M., Hill, R.B. & Pellegrini, L. Structural and mechanistic basis of Parl activity and regulation. Cell Death Differ. 18, 1531–1539 (2011).
    Article CAS Google Scholar
  37. Ye, Y., Meyer, H.H. & Rapoport, T.A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414, 652–656 (2001).
    Article CAS Google Scholar
  38. Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat. Cell Biol. 4, 134–139 (2002).
    Article CAS Google Scholar
  39. Rabinovich, E., Kerem, A., Fröhlich, K.-U., Diamant, N. & Bar-Nun, S. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell. Biol. 22, 626–634 (2002).
    Article CAS Google Scholar
  40. Bruderer, R.M., Brasseur, C. & Meyer, H.H. The AAA ATPase p97/VCP interacts with its alternative co-factors, Ufd1-Npl4 and p47, through a common bipartite binding mechanism. J. Biol. Chem. 279, 49609–49616 (2004).
    Article CAS Google Scholar
  41. Mueller, B., Klemm, E.J., Spooner, E., Claessen, J.H. & Ploegh, H.L. SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc. Natl. Acad. Sci. USA 105, 12325–12330 (2008).
    Article CAS Google Scholar
  42. Termine, D., Wu, Y., Liu, Y. & Sifers, R.N. Alpha1-antitrypsin as model to assess glycan function in endoplasmic reticulum. Methods 35, 348–353 (2005).
    Article CAS Google Scholar
  43. Hirsch, C., Blom, D. & Ploegh, H.L. A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J. 22, 1036–1046 (2003).
    Article CAS Google Scholar
  44. Blom, D., Hirsch, C., Stern, P., Tortorella, D. & Ploegh, H.L. A glycosylated type I membrane protein becomes cytosolic when peptide: _N_-glycanase is compromised. EMBO J. 23, 650–658 (2004).
    Article CAS Google Scholar
  45. Hirsch, C., Misaghi, S., Blom, D., Pacold, M.E. & Ploegh, H.L. Yeast _N_-glycanase distinguishes between native and non-native glycoproteins. EMBO Rep. 5, 201–206 (2004).
    Article CAS Google Scholar
  46. Elkabetz, Y., Shapira, I., Rabinovich, E. & Bar-Nun, S. Distinct steps in dislocation of luminal endoplasmic reticulum-associated degradation substrates: roles of endoplamic reticulum-bound p97/Cdc48p and proteasome. J. Biol. Chem. 279, 3980–3989 (2004).
    Article CAS Google Scholar
  47. Baker, B.M. & Tortorella, D. Dislocation of an endoplasmic reticulum membrane glycoprotein involves the formation of partially dislocated ubiquitinated polypeptides. J. Biol. Chem. 282, 26845–26856 (2007).
    Article CAS Google Scholar
  48. Horn, S.C. et al. Usa1 functions as a scaffold of the HRD-ubiquitin ligase. Mol. Cell 36, 782–793 (2009).
    Article CAS Google Scholar
  49. Tatsuta, T., Augustin, S., Nolden, M., Friedrichs, B. & Langer, T. m-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria. EMBO J. 26, 325–335 (2007).
    Article CAS Google Scholar
  50. Zettl, M., Adrain, C., Strisovsky, K., Lastun, V. & Freeman, M. Rhomboid family pseudoproteases use the ER quality control machinery to regulate intercellular signaling. Cell 145, 79–91 (2011).
    Article CAS Google Scholar
  51. DeLaBarre, B., Christianson, J.C., Kopito, R.R. & Brunger, A.T. Central pore residues mediate the p97/VCP activity required for ERAD. Mol. Cell 22, 451–462 (2006).
    Article CAS Google Scholar
  52. Tang, F.-C. et al. Stable suppression of gene expression in murine embryonic stem cells by RNAi directed from DNA vector-based short hairpin RNA. Stem Cells 22, 93–99 (2004).
    Article CAS Google Scholar
  53. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).
    Article CAS Google Scholar

Download references