Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum (original) (raw)
References
Lilley, B.N. & Ploegh, H.L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature429, 834–840 (2004). ArticleCAS Google Scholar
Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T.A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature429, 841–847 (2004). ArticleCAS Google Scholar
Younger, J.M. et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell126, 571–582 (2006). ArticleCAS Google Scholar
Oda, Y. et al. Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J. Cell Biol.172, 383–393 (2006). ArticleCAS Google Scholar
Knop, M., Finger, A., Braun, T., Hellmuth, K. & Wolf, D.H. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J.15, 753–763 (1996). ArticleCAS Google Scholar
Taxis, C. et al. Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J. Biol. Chem.278, 35903–35913 (2003). ArticleCAS Google Scholar
Carvalho, P., Goder, V. & Rapoport, T.A. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell126, 361–373 (2006). ArticleCAS Google Scholar
Hitt, R. & Wolf, D.H. Der1p, a protein required for degradation of malfolded soluble proteins of the endoplasmic reticulum: topology and Der1-like proteins. FEMS. Yeast Res.4, 721–729 (2004). ArticleCAS Google Scholar
Sato, B.K. & Hampton, R.Y. Yeast Derlin Dfm1 interacts with Cdc48 and functions in ER homeostasis. Yeast23, 1053–1064 (2006). ArticleCAS Google Scholar
Stolz, A., Schweizer, R.S., Schafer, A. & Wolf, D.H. Dfm1 forms distinct complexes with Cdc48 and the ER ubiquitin ligases and is required for ERAD. Traffic11, 1363–1369 (2010). ArticleCAS Google Scholar
Lilley, B.N. & Ploegh, H.L. Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. Proc. Natl. Acad. Sci. USA102, 14296–14301 (2005). ArticleCAS Google Scholar
Ye, Y. et al. Inaugural Article: Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane. Proc. Natl. Acad. Sci. USA102, 14132–14138 (2005). ArticleCAS Google Scholar
Carvalho, P., Stanley, A.M. & Rapoport, T.A. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell143, 579–591 (2010). ArticleCAS Google Scholar
Wahlman, J. et al. Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system. Cell129, 943–955 (2007). ArticleCAS Google Scholar
Freeman, M. Rhomboid proteases and their biological functions. Annu. Rev. Genet.42, 191–210 (2008). ArticleCAS Google Scholar
Urban, S., Lee, J.R. & Freeman, M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell107, 173–182 (2001). ArticleCAS Google Scholar
Urban, S., Lee, J.R. & Freeman, M. A family of Rhomboid intramembrane proteases activates all Drosophila membrane-tethered EGF ligands. EMBO J.21, 4277–4286 (2002). ArticleCAS Google Scholar
McQuibban, G.A., Saurya, S. & Freeman, M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature423, 537–541 (2003). ArticleCAS Google Scholar
Wang, Y., Zhang, Y. & Ha, Y. Crystal structure of a rhomboid family intramembrane protease. Nature444, 179–180 (2006). ArticleCAS Google Scholar
Lemberg, M.K. & Freeman, M. Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. Genome Res.17, 1634–1646 (2007). ArticleCAS Google Scholar
Kelley, L.A. & Sternberg, M.J.E. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc.4, 363–371 (2009). ArticleCAS Google Scholar
Lemberg, M.K. et al. Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J.24, 464–472 (2005). ArticleCAS Google Scholar
Urban, S. & Wolfe, M.S. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc. Natl. Acad. Sci. USA102, 1883–1888 (2005). ArticleCAS Google Scholar
Urban, S., Schlieper, D. & Freeman, M. Conservation of intramembrane proteolytic activity and substrate specificity in prokaryotic and eukaryotic rhomboids. Curr. Biol.12, 1507–1512 (2002). ArticleCAS Google Scholar
Maegawa, S., Ito, K. & Akiyama, Y. Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane. Biochemistry44, 13543–13552 (2005). ArticleCAS Google Scholar
Baker, R.P., Young, K., Feng, L., Shi, Y. & Urban, S. Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate. Proc. Natl. Acad. Sci. USA104, 8257–8262 (2007). ArticleCAS Google Scholar
Söding, J., Biegert, A. & Lupas, A.N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res.33, W244–W248 (2005). Article Google Scholar
Stevenson, L.G. et al. Rhomboid protease AarA mediates quorum-sensing in Providencia stuartii by activating TatA of the twin-arginine translocase. Proc. Natl. Acad. Sci. USA104, 1003–1008 (2007). ArticleCAS Google Scholar
Zhou, X.W., Blackman, M.J., Howell, S.A. & Carruthers, V.B. Proteomic analysis of cleavage events reveals a dynamic two-step mechanism for proteolysis of a key parasite adhesive complex. Mol. Cell. Proteomics3, 565–576 (2004). ArticleCAS Google Scholar
Brossier, F., Jewett, T.J., Sibley, L.D. & Urban, S. A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc. Natl. Acad. Sci. USA102, 4146–4151 (2005). ArticleCAS Google Scholar
Wu, Z. et al. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat. Struct. Mol. Biol.13, 1084–1091 (2006). ArticleCAS Google Scholar
Bondar, A.-N., del Val, C. & White, S.H. Rhomboid protease dynamics and lipid interactions. Structure17, 395–405 (2009). ArticleCAS Google Scholar
Wang, Y., Maegawa, S., Akiyama, Y. & Ha, Y. The role of L1 loop in the mechanism of rhomboid intramembrane protease GlpG. J. Mol. Biol.374, 1104–1113 (2007). ArticleCAS Google Scholar
Urban, S. & Baker, R.P. In vivo analysis reveals substrate-gating mutants of a rhomboid intramembrane protease display increased activity in living cells. Biol. Chem.389, 1107–1115 (2008). ArticleCAS Google Scholar
von Heijne, G. & Gavel, Y. Topogenic signals in integral membrane proteins. Eur. J. Biochem.174, 671–678 (1988). ArticleCAS Google Scholar
Jeyaraju, D.V., McBride, H.M., Hill, R.B. & Pellegrini, L. Structural and mechanistic basis of Parl activity and regulation. Cell Death Differ.18, 1531–1539 (2011). ArticleCAS Google Scholar
Ye, Y., Meyer, H.H. & Rapoport, T.A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature414, 652–656 (2001). ArticleCAS Google Scholar
Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat. Cell Biol.4, 134–139 (2002). ArticleCAS Google Scholar
Rabinovich, E., Kerem, A., Fröhlich, K.-U., Diamant, N. & Bar-Nun, S. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol. Cell. Biol.22, 626–634 (2002). ArticleCAS Google Scholar
Bruderer, R.M., Brasseur, C. & Meyer, H.H. The AAA ATPase p97/VCP interacts with its alternative co-factors, Ufd1-Npl4 and p47, through a common bipartite binding mechanism. J. Biol. Chem.279, 49609–49616 (2004). ArticleCAS Google Scholar
Mueller, B., Klemm, E.J., Spooner, E., Claessen, J.H. & Ploegh, H.L. SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc. Natl. Acad. Sci. USA105, 12325–12330 (2008). ArticleCAS Google Scholar
Termine, D., Wu, Y., Liu, Y. & Sifers, R.N. Alpha1-antitrypsin as model to assess glycan function in endoplasmic reticulum. Methods35, 348–353 (2005). ArticleCAS Google Scholar
Hirsch, C., Blom, D. & Ploegh, H.L. A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J.22, 1036–1046 (2003). ArticleCAS Google Scholar
Blom, D., Hirsch, C., Stern, P., Tortorella, D. & Ploegh, H.L. A glycosylated type I membrane protein becomes cytosolic when peptide: _N_-glycanase is compromised. EMBO J.23, 650–658 (2004). ArticleCAS Google Scholar
Hirsch, C., Misaghi, S., Blom, D., Pacold, M.E. & Ploegh, H.L. Yeast _N_-glycanase distinguishes between native and non-native glycoproteins. EMBO Rep.5, 201–206 (2004). ArticleCAS Google Scholar
Elkabetz, Y., Shapira, I., Rabinovich, E. & Bar-Nun, S. Distinct steps in dislocation of luminal endoplasmic reticulum-associated degradation substrates: roles of endoplamic reticulum-bound p97/Cdc48p and proteasome. J. Biol. Chem.279, 3980–3989 (2004). ArticleCAS Google Scholar
Baker, B.M. & Tortorella, D. Dislocation of an endoplasmic reticulum membrane glycoprotein involves the formation of partially dislocated ubiquitinated polypeptides. J. Biol. Chem.282, 26845–26856 (2007). ArticleCAS Google Scholar
Horn, S.C. et al. Usa1 functions as a scaffold of the HRD-ubiquitin ligase. Mol. Cell36, 782–793 (2009). ArticleCAS Google Scholar
Tatsuta, T., Augustin, S., Nolden, M., Friedrichs, B. & Langer, T. m-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria. EMBO J.26, 325–335 (2007). ArticleCAS Google Scholar
Zettl, M., Adrain, C., Strisovsky, K., Lastun, V. & Freeman, M. Rhomboid family pseudoproteases use the ER quality control machinery to regulate intercellular signaling. Cell145, 79–91 (2011). ArticleCAS Google Scholar
DeLaBarre, B., Christianson, J.C., Kopito, R.R. & Brunger, A.T. Central pore residues mediate the p97/VCP activity required for ERAD. Mol. Cell22, 451–462 (2006). ArticleCAS Google Scholar
Tang, F.-C. et al. Stable suppression of gene expression in murine embryonic stem cells by RNAi directed from DNA vector-based short hairpin RNA. Stem Cells22, 93–99 (2004). ArticleCAS Google Scholar
Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr.66, 12–21 (2010). ArticleCAS Google Scholar