Knodler, L.A. & Celli, J. Eating the strangers within: host control of intracellular bacteria via xenophagy. Cell. Microbiol.13, 1319–1327 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature408, 488–492 (2000).Identifies the Atg8–PE conjugation system. ArticleCASPubMed Google Scholar
Mizushima, N. et al. A protein conjugation system essential for autophagy. Nature395, 395–398 (1998).Identifies the Atg12–Atg5 conjugation system. ArticleCASPubMed Google Scholar
Weidberg, H. et al. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J.29, 1792–1802 (2010). ArticleCASPubMedPubMed Central Google Scholar
Xie, Z., Nair, U. & Klionsky, D.J. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell19, 3290–3298 (2008).Shows that Atg8 levels correlate with the size of autophagosomes. ArticleCASPubMedPubMed Central Google Scholar
Nakatogawa, H., Ichimura, Y. & Ohsumi, Y. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell130, 165–178 (2007). ArticleCASPubMed Google Scholar
Shintani, T., Huang, W.-P., Stromhaug, P.E. & Klionsky, D.J. Mechanism of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. Cell3, 825–837 (2002). ArticleCASPubMedPubMed Central Google Scholar
Hanada, T. et al. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol. Chem.282, 37298–37302 (2007).Identifies the Atg12–Atg5 complex as a new E3 ligase promoting Atg8 lipidation. ArticleCASPubMed Google Scholar
Kuma, A., Mizushima, N., Ishihara, N. & Ohsumi, Y. Formation of the approximately 350-kDa Apg12-Apg5•Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem.277, 18619–18625 (2002). ArticleCASPubMed Google Scholar
Fujita, N. et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell19, 2092–2100 (2008). ArticleCASPubMedPubMed Central Google Scholar
Noda, N.N., Ohsumi, Y. & Inagaki, F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett.584, 1379–1385 (2010). ArticleCASPubMed Google Scholar
Noda, N.N. et al. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells13, 1211–1218 (2008).Refs.22and44identify the structural basis for AIM or LIR binding to Atg8 (LC3) UBLs. ArticleCASPubMed Google Scholar
Behrends, C., Sowa, M.E., Gygi, S.P. & Harper, J.W. Network organization of the human autophagy system. Nature466, 68–76 (2010).A proteomic analysis of Atg8 (LC3) family–interacting proteins, suggesting the complexity of the autophagy network. ArticleCASPubMedPubMed Central Google Scholar
Noda, N.N. et al. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell44, 462–475 (2011).Refs.24, 69and70revealed mechanisms by which Atg7 initiates conjugation of autophagy UBLs. ArticleCASPubMed Google Scholar
Satoo, K. et al. The structure of Atg4B–LC3 complex reveals the mechanism of LC3 processing and delipidation during autophagy. EMBO J.28, 1341–1350 (2009).Revealed the structural mechanisms underlying ATG4-dependent processing and deconjugation of LC3 family members. ArticleCASPubMedPubMed Central Google Scholar
Suzuki, H. et al. Structural basis of the autophagy-related LC3/Atg13 LIR complex: recognition and interaction mechanism. Structure22, 47–58 (2014). ArticleCASPubMed Google Scholar
Pankiv, S. et al. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol.188, 253–269 (2010). ArticleCASPubMedPubMed Central Google Scholar
Seillier, M. et al. TP53INP1, a tumor suppressor, interacts with LC3 and ATG8-family proteins through the LC3-interacting region (LIR) and promotes autophagy-dependent cell death. Cell Death Differ.19, 1525–1535 (2012). ArticleCASPubMedPubMed Central Google Scholar
Popovic, D. et al. Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol. Cell. Biol.32, 1733–1744 (2012). ArticleCASPubMedPubMed Central Google Scholar
Birgisdottir, Å.B., Lamark, T. & Johansen, T. The LIR motif: crucial for selective autophagy. J. Cell Sci.126, 3237–3247 (2013). ArticleCASPubMed Google Scholar
Kanki, T., Wang, K., Cao, Y., Baba, M. & Klionsky, D.J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell17, 98–109 (2009). ArticleCASPubMedPubMed Central Google Scholar
Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell17, 87–97 (2009). ArticleCASPubMed Google Scholar
Motley, A.M., Nuttall, J.M. & Hettema, E.H. Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J.31, 2852–2868 (2012). ArticleCASPubMedPubMed Central Google Scholar
Shaid, S., Brandts, C.H., Serve, H. & Dikic, I. Ubiquitination and selective autophagy. Cell Death Differ.20, 21–30 (2013). ArticleCASPubMed Google Scholar
Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem.282, 24131–24145 (2007). ArticleCASPubMed Google Scholar
Kirkin, V. et al. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell33, 505–516 (2009). ArticleCASPubMed Google Scholar
Thurston, T.L., Ryzhakov, G., Bloor, S., von Muhlinen, N. & Randow, F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol.10, 1215–1221 (2009). ArticleCASPubMed Google Scholar
Korac, J. et al. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J. Cell Sci.126, 580–592 (2013). ArticleCASPubMed Google Scholar
Jiang, S., Wells, C.D. & Roach, P.J. Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem. Biophys. Res. Commun.413, 420–425 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ichimura, Y. et al. Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem.283, 22847–22857 (2008). ArticleCASPubMed Google Scholar
Rozenknop, A. et al. Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1. J. Mol. Biol.410, 477–487 (2011). ArticleCASPubMed Google Scholar
Kaufmann, A., Beier, V., Franquelim, H.G. & Wollert, T. Molecular mechanism of autophagic membrane-scaffold assembly and disassembly. Cell156, 469–481 (2014). ArticleCASPubMed Google Scholar
Birmingham, C.L., Smith, A.C., Bakowski, M.A., Yoshimori, T. & Brumell, J.H. Autophagy controls Salmonella infection in response to damage to the _Salmonella_-containing vacuole. J. Biol. Chem.281, 11374–11383 (2006). ArticleCASPubMed Google Scholar
Thurston, T.L., Wandel, M.P., von Muhlinen, N., Foeglein, A. & Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature482, 414–418 (2012). ArticleCASPubMedPubMed Central Google Scholar
von Muhlinen, N. et al. LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol. Cell48, 329–342 (2012).Revealed basis for LC3C specificity toward a CLIR. ArticleCASPubMedPubMed Central Google Scholar
Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science333, 228–233 (2011).Refs.50and51demonstrated phosphorylation-dependent recruitment of cargo to Atg8 (LC3) family members. ArticleCASPubMedPubMed Central Google Scholar
Rogov, V.V. et al. Structural basis for phosphorylation-triggered autophagic clearance of Salmonella. Biochem. J.454, 459–466 (2013). ArticleCASPubMed Google Scholar
Weiergräber, O.H. et al. Ligand binding mode of GABAA receptor-associated protein. J. Mol. Biol.381, 1320–1331 (2008). ArticlePubMedCAS Google Scholar
Kirisako, T. et al. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J. Cell Biol.151, 263–276 (2000). ArticleCASPubMedPubMed Central Google Scholar
Li, M. et al. Kinetics comparisons of mammalian Atg4 homologues indicate selective preferences toward diverse Atg8 substrates. J. Biol. Chem.286, 7327–7338 (2011). ArticleCASPubMed Google Scholar
Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J.19, 5720–5728 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hemelaar, J., Lelyveld, V.S., Kessler, B.M. & Ploegh, H.L. A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1–LC3, GABARAP, and Apg8L. J. Biol. Chem.278, 51841–51850 (2003). ArticleCASPubMed Google Scholar
Kabeya, Y. et al. LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J. Cell Sci.117, 2805–2812 (2004). ArticleCASPubMed Google Scholar
Mariño, G. et al. Human autophagins, a family of cysteine proteinases potentially implicated in cell degradation by autophagy. J. Biol. Chem.278, 3671–3678 (2003). ArticlePubMedCAS Google Scholar
Tanida, I., Ueno, T. & Kominami, E. Human light chain 3/MAP1LC3B is cleaved at its carboxyl-terminal Met121 to expose Gly120 for lipidation and targeting to autophagosomal membranes. J. Biol. Chem.279, 47704–47710 (2004). ArticleCASPubMed Google Scholar
Kumanomidou, T. et al. The crystal structure of human Atg4b, a processing and de-conjugating enzyme for autophagosome-forming modifiers. J. Mol. Biol.355, 612–618 (2006). ArticleCASPubMed Google Scholar
Sugawara, K. et al. Structural basis for the specificity and catalysis of human Atg4B responsible for mammalian autophagy. J. Biol. Chem.280, 40058–40065 (2005). ArticleCASPubMed Google Scholar
Sakoh-Nakatogawa, M. et al. Atg12–Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site. Nat. Struct. Mol. Biol.20, 433–439 (2013). ArticleCASPubMed Google Scholar
Noda, N.N., Fujioka, Y., Hanada, T., Ohsumi, Y. & Inagaki, F. Structure of the Atg12–Atg5 conjugate reveals a platform for stimulating Atg8–PE conjugation. EMBO Rep.14, 206–211 (2013).Refs.65and79revealed the structure of the Atg12–Atg5 conjugate. ArticleCASPubMed Google Scholar
Schulman, B.A. & Harper, J.W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol.10, 319–331 (2009). ArticleCASPubMedPubMed Central Google Scholar
Taherbhoy, A.M. et al. Atg8 transfer from Atg7 to Atg3: a distinctive E1–E2 architecture and mechanism in the autophagy pathway. Mol. Cell44, 451–461 (2011). ArticleCASPubMedPubMed Central Google Scholar
Hong, S.B. et al. Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat. Struct. Mol. Biol.18, 1323–1330 (2011). ArticleCASPubMed Google Scholar
Kaiser, S.E. et al. Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7–Atg3 and Atg7–Atg10 structures. Nat. Struct. Mol. Biol.19, 1242–1249 (2012).Refs.71and72revealed mechanisms of Atg7 interactions with the autophagy E2s Atg3 and Atg10. ArticleCASPubMedPubMed Central Google Scholar
Yamaguchi, M. et al. Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7. Nat. Struct. Mol. Biol.19, 1250–1256 (2012). ArticleCASPubMed Google Scholar
Komatsu, M. et al. The C-terminal region of an Apg7p/Cvt2p is required for homodimerization and is essential for its E1 activity and E1–E2 complex formation. J. Biol. Chem.276, 9846–9854 (2001). ArticleCASPubMed Google Scholar
Hong, S.B., Kim, B.W., Kim, J.H. & Song, H.K. Structure of the autophagic E2 enzyme Atg10. Acta Crystallogr. D Biol. Crystallogr.68, 1409–1417 (2012). ArticleCASPubMed Google Scholar
Yamada, Y. et al. The crystal structure of Atg3, an autophagy-related ubiquitin carrier protein (E2) enzyme that mediates Atg8 lipidation. J. Biol. Chem.282, 8036–8043 (2007). ArticleCASPubMed Google Scholar
Yamaguchi, M. et al. Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate. Structure20, 1244–1254 (2012). ArticleCASPubMed Google Scholar
Cao, Y., Cheong, H., Song, H. & Klionsky, D.J. In vivo reconstitution of autophagy in Saccharomyces cerevisiae. J. Cell Biol.182, 703–713 (2008). ArticleCASPubMedPubMed Central Google Scholar
Romanov, J. et al. Mechanism and functions of membrane binding by the Atg5–Atg12/Atg16 complex during autophagosome formation. EMBO J.31, 4304–4317 (2012). ArticleCASPubMedPubMed Central Google Scholar
Otomo, C., Metlagel, Z., Takaesu, G. & Otomo, T. Structure of the human ATG12∼ATG5 conjugate required for LC3 lipidation in autophagy. Nat. Struct. Mol. Biol.20, 59–66 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Metlagel, Z., Otomo, C., Takaesu, G. & Otomo, T. Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12. Proc. Natl. Acad. Sci. USA110, 18844–18849 (2013). ArticleCASPubMedPubMed Central Google Scholar
Brownell, J.E. et al. Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Mol. Cell37, 102–111 (2010). ArticleCASPubMed Google Scholar
Boada-Romero, E. et al. TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3. EMBO J.32, 566–582 (2013). ArticleCASPubMedPubMed Central Google Scholar
Travassos, L.H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol.11, 55–62 (2010). ArticleCASPubMed Google Scholar
Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus. Science306, 1037–1040 (2004). ArticleCASPubMed Google Scholar
Hwang, S. et al. Nondegradative role of Atg5-Atg12/ Atg16L1 autophagy protein complex in antiviral activity of interferon gamma. Cell Host Microbe11, 397–409 (2012). ArticleCASPubMedPubMed Central Google Scholar
Cadwell, K., Patel, K.K., Komatsu, M., Virgin, H.W. IV & Stappenbeck, T.S. A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease. Autophagy5, 250–252 (2009). ArticleCASPubMed Google Scholar
Tanji, K., Mori, F., Kakita, A., Takahashi, H. & Wakabayashi, K. Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease. Neurobiol. Dis.43, 690–697 (2011). ArticleCASPubMed Google Scholar
Chen, D. et al. Genetic analysis of the ATG7 gene promoter in sporadic Parkinson’s disease. Neurosci. Lett.534, 193–198 (2013). ArticleCASPubMed Google Scholar
Chen, D. et al. A novel and functional variant within the ATG5 gene promoter in sporadic Parkinson’s disease. Neurosci. Lett.538, 49–53 (2013). ArticleCASPubMed Google Scholar
Metzger, S. et al. Age at onset in Huntington’s disease is modified by the autophagy pathway: implication of the V471A polymorphism in Atg7. Hum. Genet.128, 453–459 (2010). ArticleCASPubMed Google Scholar
Komatsu, M. et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol.169, 425–434 (2005). ArticleCASPubMedPubMed Central Google Scholar
Ding, W.X. et al. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology139, 1740–1752 (2010). ArticleCASPubMed Google Scholar
Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature441, 885–889 (2006).Refs.94and95show that neuron-specific loss of ATG5 or ATG7 leads to neurodegeneration. ArticleCASPubMed Google Scholar
Komatsu, M. et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature441, 880–884 (2006). ArticleCASPubMed Google Scholar
Masiero, E. et al. Autophagy is required to maintain muscle mass. Cell Metab.10, 507–515 (2009). ArticleCASPubMed Google Scholar
Raben, N. et al. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum. Mol. Genet.17, 3897–3908 (2008). CASPubMedPubMed Central Google Scholar
Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature456, 264–268 (2008). ArticleCASPubMed Google Scholar
Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature456, 259–263 (2008). ArticleCASPubMedPubMed Central Google Scholar
Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet.39, 207–211 (2007). ArticleCASPubMed Google Scholar
Rioux, J.D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet.39, 596–604 (2007). ArticleCASPubMedPubMed Central Google Scholar
Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep.11, 45–51 (2010).Refs.102and103show that BNIP3L (Nix) is a mitophagy receptor that binds LC3. ArticleCASPubMed Google Scholar
Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature432, 1032–1036 (2004). ArticleCASPubMed Google Scholar
Tsukamoto, S. et al. Autophagy is essential for preimplantation development of mouse embryos. Science321, 117–120 (2008). ArticleCASPubMed Google Scholar
Mortensen, M. et al. The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance. J. Exp. Med.208, 455–467 (2011). ArticleCASPubMedPubMed Central Google Scholar
Kitamura, K. et al. Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum. PLoS ONE7, e42977 (2012). ArticleCASPubMedPubMed Central Google Scholar
Scherz-Shouval, R. et al. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J.26, 1749–1760 (2007). ArticleCASPubMedPubMed Central Google Scholar
Nair, U., Cao, Y., Xie, Z. & Klionsky, D.J. Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy. J. Biol. Chem.285, 11476–11488 (2010). ArticleCASPubMedPubMed Central Google Scholar
Thompson, A.R., Doelling, J.H., Suttangkakul, A. & Vierstra, R.D. Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol.138, 2097–2110 (2005). ArticleCASPubMedPubMed Central Google Scholar
Mizushima, N. et al. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J. Cell Biol.152, 657–668 (2001). ArticleCASPubMedPubMed Central Google Scholar
Hain, A.U.P. et al. Structural characterization and inhibition of the Plasmodium Atg8-Atg3 interaction. J. Struct. Biol.180, 551–562 (2012). ArticleCASPubMedPubMed Central Google Scholar
Yamaguchi, M. et al. Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J. Biol. Chem.285, 29599–29607 (2010). ArticleCASPubMedPubMed Central Google Scholar
Martinez, J. et al. Microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl. Acad. Sci. USA108, 17396–17401 (2011). ArticleCASPubMedPubMed Central Google Scholar
Ishibashi, K., Uemura, T., Waguri, S. & Fukuda, M. Atg16L1, an essential factor for canonical autophagy, participates in hormone secretion from PC12 cells independently of autophagic activity. Mol. Biol. Cell23, 3193–3202 (2012). ArticleCASPubMedPubMed Central Google Scholar
Yousefi, S. et al. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat. Cell Biol.8, 1124–1132 (2006). ArticleCASPubMed Google Scholar
Lee, I. & Schindelin, H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell134, 268–278 (2008). ArticleCASPubMed Google Scholar