Cleaning up in the endoplasmic reticulum: ubiquitin in charge (original) (raw)
Brodsky, J.L. & Wojcikiewicz, R.J. Substrate-specific mediators of ER associated degradation (ERAD). Curr. Opin. Cell Biol.21, 516–521 (2009). CASPubMedPubMed Central Google Scholar
Hampton, R.Y. ER-associated degradation in protein quality control and cellular regulation. Curr. Opin. Cell Biol.14, 476–482 (2002). CASPubMed Google Scholar
Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol.8, 519–529 (2007). CASPubMed Google Scholar
Needham, P.G. & Brodsky, J.L. How early studies on secreted and membrane protein quality control gave rise to the ER associated degradation (ERAD) pathway: the early history of ERAD. Biochim. Biophys. Acta1833, 2447–2457 (2013). CASPubMedPubMed Central Google Scholar
Lippincott-Schwartz, J., Bonifacino, J.S., Yuan, L.C. & Klausner, R.D. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell54, 209–220 (1988).Refs.5and6were the first to demonstrate that unassembled endogenous membrane proteins are rapidly degraded after import into the ER, thus defining a new pathway of protein degradation at the ER. CASPubMed Google Scholar
Bonifacino, J.S., Cosson, P. & Klausner, R.D. Colocalized transmembrane determinants for ER degradation and subunit assembly explain the intracellular fate of TCR chains. Cell63, 503–513 (1990). CASPubMed Google Scholar
Ward, C.L., Omura, S. & Kopito, R.R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell83, 121–127 (1995).Refs.7, 8, 9, 10, 11, 12demonstrated that ERAD requires the ubiquitin-proteasome system, thus suggesting that the substrates need to be retrotranslocated into the cytosol before degradation. CASPubMed Google Scholar
Sommer, T. & Jentsch, S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature365, 176–179 (1993). CASPubMed Google Scholar
Hiller, M.M., Finger, A., Schweiger, M. & Wolf, D.H. ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science273, 1725–1728 (1996). CASPubMed Google Scholar
Hampton, R.Y., Gardner, R.G. & Rine, J. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol. Biol. Cell7, 2029–2044 (1996). CASPubMedPubMed Central Google Scholar
Jensen, T.J. et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell83, 129–135 (1995). CASPubMed Google Scholar
Wiertz, E.J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell84, 769–779 (1996). CASPubMed Google Scholar
Tsai, B., Ye, Y. & Rapoport, T.A. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat. Rev. Mol. Cell Biol.3, 246–255 (2002). CASPubMed Google Scholar
Shimizu, Y., Okuda-Shimizu, Y. & Hendershot, L.M. Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. Mol. Cell40, 917–926 (2010). CASPubMedPubMed Central Google Scholar
Wang, X. et al. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J. Cell Biol.177, 613–624 (2007). CASPubMedPubMed Central Google Scholar
Ishikura, S., Weissman, A.M. & Bonifacino, J.S. Serine residues in the cytosolic tail of the T-cell antigen receptor α-chain mediate ubiquitination and endoplasmic reticulum-associated degradation of the unassembled protein. J. Biol. Chem.285, 23916–23924 (2010). CASPubMedPubMed Central Google Scholar
Pickart, C.M. & Fushman, D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol.8, 610–616 (2004). CASPubMed Google Scholar
Li, W. & Ye, Y. Polyubiquitin chains: functions, structures, and mechanisms. Cell. Mol. Life Sci.65, 2397–2406 (2008). CASPubMedPubMed Central Google Scholar
Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell44, 325–340 (2011). CASPubMedPubMed Central Google Scholar
van der Veen, A.G. & Ploegh, H.L. Ubiquitin-like proteins. Annu. Rev. Biochem.81, 323–357 (2012). CASPubMed Google Scholar
Ahner, A. et al. Small heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier–dependent pathway. Mol. Biol. Cell24, 74–84 (2013). CASPubMedPubMed Central Google Scholar
Bays, N.W., Gardner, R.G., Seelig, L.P., Joazeiro, C.A. & Hampton, R.Y. Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat. Cell Biol.3, 24–29 (2001).Refs.23and24identified the two major ubiquitin ligases involved in ERAD in budding yeast. CASPubMed Google Scholar
Swanson, R., Locher, M. & Hochstrasser, M. A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matα2 repressor degradation. Genes Dev.15, 2660–2674 (2001). CASPubMedPubMed Central Google Scholar
Stolz, A., Besser, S., Hottmann, H. & Wolf, D.H. Previously unknown role for the ubiquitin ligase Ubr1 in endoplasmic reticulum–associated protein degradation. Proc. Natl. Acad. Sci. USA110, 15271–15276 (2013). CASPubMedPubMed Central Google Scholar
Vashist, S. & Ng, D.T. Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J. Cell Biol.165, 41–52 (2004).Refs.26and27elucidated different routes by which distinct classes of misfolded ER proteins are retrotranslocated for degradation. CASPubMedPubMed Central Google Scholar
Carvalho, P., Goder, V. & Rapoport, T.A. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell126, 361–373 (2006). CASPubMed Google Scholar
Mehnert, M., Sommer, T. & Jarosch, E. ERAD ubiquitin ligases: multifunctional tools for protein quality control and waste disposal in the endoplasmic reticulum. Bioessays32, 905–913 (2010). CASPubMed Google Scholar
Mueller, B., Klemm, E.J., Spooner, E., Claessen, J.H. & Ploegh, H.L. SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc. Natl. Acad. Sci. USA105, 12325–12330 (2008). CASPubMedPubMed Central Google Scholar
Wang, X. et al. Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated degradation substrates. J. Cell Biol.187, 655–668 (2009). CASPubMedPubMed Central Google Scholar
Chen, Z., Du, S. & Fang, S. gp78: a multifaceted ubiquitin ligase that integrates a unique protein degradation pathway from the endoplasmic reticulum. Curr. Protein Pept. Sci.13, 414–424 (2012). CASPubMed Google Scholar
Bernasconi, R., Galli, C., Calanca, V., Nakajima, T. & Molinari, M. Stringent requirement for HRD1, SEL1L, and OS-9/XTP3-B for disposal of ERAD-LS substrates. J. Cell Biol.188, 223–235 (2010). CASPubMedPubMed Central Google Scholar
Christianson, J.C. et al. Defining human ERAD networks through an integrative mapping strategy. Nat. Cell Biol.14, 93–105 (2012).This paper used a systems-biology approach to construct a complex functional-interaction map of the proteins involved in mammalian ERAD. CAS Google Scholar
Younger, J.M. et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis transmembrane conductance regulator. Cell126, 571–582 (2006). CASPubMed Google Scholar
Morito, D. et al. Gp78 cooperates with RMA1 in endoplasmic reticulum–associated degradation of CFTRDeltaF508. Mol. Biol. Cell19, 1328–1336 (2008). CASPubMedPubMed Central Google Scholar
Komander, D., Clague, M.J. & Urbe, S. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol.10, 550–563 (2009). CASPubMed Google Scholar
Ernst, R., Mueller, B., Ploegh, H.L. & Schlieker, C. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Mol. Cell36, 28–38 (2009). CASPubMedPubMed Central Google Scholar
Sowa, M.E., Bennett, E.J., Gygi, S.P. & Harper, J.W. Defining the human deubiquitinating enzyme interaction landscape. Cell138, 389–403 (2009). CASPubMedPubMed Central Google Scholar
Wang, Q., Li, L. & Ye, Y. Regulation of retrotranslocation by p97-associated deubiquitinating enzyme ataxin-3. J. Cell Biol.174, 963–971 (2006). CASPubMedPubMed Central Google Scholar
Ernst, R. et al. Enzymatic blockade of the ubiquitin-proteasome pathway. PLoS Biol.8, e1000605 (2011). PubMed Google Scholar
Bernardi, K.M., Williams, J.M., Inoue, T., Schultz, A. & Tsai, B. A deubiquitinase negatively regulates retro-translocation of non-ubiquitinated substrates. Mol. Biol. Cell24, 3545–3556 (2013). CASPubMedPubMed Central Google Scholar
Liu, Y. et al. USP13 antagonizes gp78 to maintain functionality of a chaperone in ER-associated degradation. Elife3, e01369 (2014).This paper reported that a machinery protein in ERAD could be subject to regulation by ubiquitination in a proteasome-independent manner. PubMedPubMed Central Google Scholar
Zhang, Z.R., Bonifacino, J.S. & Hegde, R.S. Deubiquitinases sharpen substrate discrimination during membrane protein degradation from the ER. Cell154, 609–622 (2013). CASPubMedPubMed Central Google Scholar
Schubert, U. et al. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature404, 770–774 (2000). CASPubMed Google Scholar
Ye, Y., Meyer, H.H. & Rapoport, T.A. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature414, 652–656 (2001).Refs.45, 46, 47, 48and54demonstrated the involvement of the AAA+ ATPase p97/VCP in ERAD. Ref. 45 also used anin vitroretrotranslocation assay to show that p97/VCP is required to move ubiquitinated ERAD substrates from the membranes to the cytosol for degradation by the proteasome. CASPubMed Google Scholar
Rabinovich, E., Kerem, A., Frohlich, K.U., Diamant, N. & Bar-Nun, S. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum–associated protein degradation. Mol. Cell. Biol.22, 626–634 (2002). CASPubMedPubMed Central Google Scholar
Jarosch, E. et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat. Cell Biol.4, 134–139 (2002). CASPubMed Google Scholar
Bays, N.W., Wilhovsky, S.K., Goradia, A., Hodgkiss-Harlow, K. & Hampton, R.Y. HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol. Biol. Cell12, 4114–4128 (2001). CASPubMedPubMed Central Google Scholar
Ye, Y. Diverse functions with a common regulator: ubiquitin takes command of an AAA ATPase. J. Struct. Biol.156, 29–40 (2006). CASPubMed Google Scholar
DeLaBarre, B. & Brunger, A.T. Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains. Nat. Struct. Biol.10, 856–863 (2003). CASPubMed Google Scholar
Zhang, X. et al. Structure of the AAA ATPase p97. Mol. Cell6, 1473–1484 (2000). CASPubMed Google Scholar
Meyer, H., Bug, M. & Bremer, S. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol.14, 117–123 (2012). CASPubMed Google Scholar
Flierman, D., Ye, Y., Dai, M., Chau, V. & Rapoport, T.A. Polyubiquitin serves as a recognition signal, rather than a ratcheting molecule, during retrotranslocation of proteins across the endoplasmic reticulum membrane. J. Biol. Chem.278, 34774–34782 (2003). CASPubMed Google Scholar
Ye, Y., Meyer, H.H. & Rapoport, T.A. Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J. Cell Biol.162, 71–84 (2003). CASPubMedPubMed Central Google Scholar
Liu, Y. & Ye, Y. Roles of p97-associated deubiquitinases in protein quality control at the endoplasmic reticulum. Curr. Protein Pept. Sci.13, 436–446 (2012). CASPubMedPubMed Central Google Scholar
Rape, M. et al. Mobilization of processed, membrane-tethered SPT23 transcription factor by CDC48(UFD1/NPL4), a ubiquitin-selective chaperone. Cell107, 667–677 (2001). CASPubMed Google Scholar
Garza, R.M., Sato, B.K. & Hampton, R.Y. In vitro analysis of Hrd1p-mediated retrotranslocation of its multispanning membrane substrate 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase. J. Biol. Chem.284, 14710–14722 (2009). CASPubMedPubMed Central Google Scholar
Raman, M., Havens, C.G., Walter, J.C. & Harper, J.W. A genome-wide screen identifies p97 as an essential regulator of DNA damage–dependent CDT1 destruction. Mol. Cell44, 72–84 (2011). CASPubMedPubMed Central Google Scholar
DeLaBarre, B., Christianson, J.C., Kopito, R.R. & Brunger, A.T. Central pore residues mediate the p97/VCP activity required for ERAD. Mol. Cell22, 451–462 (2006). CASPubMed Google Scholar
Husnjak, K. & Dikic, I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions. Annu. Rev. Biochem.81, 291–322 (2012). CASPubMed Google Scholar
Richly, H. et al. A series of ubiquitin binding factors connects CDC48/p97 to substrate multiubiquitylation and proteasomal targeting. Cell120, 73–84 (2005).Refs.61, 62and64defined the role of a class of UBA- and UBL-containing proteins in targeting retrotranslocated products to the proteasome for degradation. CASPubMed Google Scholar
Verma, R., Oania, R., Graumann, J. & Deshaies, R.J. Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell118, 99–110 (2004). CASPubMed Google Scholar
Kim, I., Mi, K. & Rao, H. Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol. Biol. Cell15, 3357–3365 (2004). CASPubMedPubMed Central Google Scholar
Lim, P.J. et al. Ubiquilin and p97/VCP bind erasin, forming a complex involved in ERAD. J. Cell Biol.187, 201–217 (2009). CASPubMedPubMed Central Google Scholar
Hiyama, H. et al. Interaction of hHR23 with S5a. The ubiquitin-like domain of hHR23 mediates interaction with S5a subunit of 26 S proteasome. J. Biol. Chem.274, 28019–28025 (1999). CASPubMed Google Scholar
Okuda-Shimizu, Y. & Hendershot, L.M. Characterization of an ERAD pathway for nonglycosylated BiP substrates, which require Herp. Mol. Cell28, 544–554 (2007). CASPubMedPubMed Central Google Scholar
Schulze, A. et al. The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. J. Mol. Biol.354, 1021–1027 (2005). CASPubMed Google Scholar
Jo, Y., Sguigna, P.V. & DeBose-Boyd, R.A. Membrane-associated ubiquitin ligase complex containing gp78 mediates sterol-accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J. Biol. Chem.286, 15022–15031 (2011). CASPubMedPubMed Central Google Scholar
Wang, Q. et al. A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble States for proteasome degradation. Mol. Cell42, 758–770 (2011).This paper demonstrated the involvement of a multifunctional cytosolic chaperone in maintaining the solubility of retrotranslocated polypeptides, which promotes their turnover in mammalian cells. CASPubMedPubMed Central Google Scholar
Horn, S.C. et al. Usa1 functions as a scaffold of the HRD-ubiquitin ligase. Mol. Cell36, 782–793 (2009). CASPubMed Google Scholar
Huang, C.H., Chu, Y.R., Ye, Y. & Chen, X. Role of HERP and a HERP-related protein in HRD1-dependent protein degradation at the endoplasmic reticulum. J. Biol. Chem.289, 4444–4454 (2014). CASPubMed Google Scholar
Xu, Y., Liu, Y., Lee, J.G. & Ye, Y. A ubiquitin-like domain recruits an oligomeric chaperone to a retrotranslocation complex in endoplasmic reticulum-associated degradation. J. Biol. Chem.288, 18068–18076 (2013). CASPubMedPubMed Central Google Scholar
Xu, Y., Cai, M., Yang, Y., Huang, L. & Ye, Y. SGTA recognizes a noncanonical ubiquitin-like domain in the Bag6-Ubl4A-Trc35 complex to promote endoplasmic reticulum-associated degradation. Cell Rep.2, 1633–1644 (2012). CASPubMedPubMed Central Google Scholar
Vembar, S.S. & Brodsky, J.L. One step at a time: endoplasmic reticulum–associated degradation. Nat. Rev. Mol. Cell Biol.9, 944–957 (2008). CASPubMedPubMed Central Google Scholar
Shamu, C.E., Story, C.M., Rapoport, T.A. & Ploegh, H.L. The pathway of US11-dependent degradation of MHC class I heavy chains involves a ubiquitin-conjugated intermediate. J. Cell Biol.147, 45–58 (1999). CASPubMedPubMed Central Google Scholar
Burr, M.L. et al. MHC class I molecules are preferentially ubiquitinated on endoplasmic reticulum luminal residues during HRD1 ubiquitin E3 ligase-mediated dislocation. Proc. Natl. Acad. Sci. USA110, 14290–14295 (2013). CASPubMedPubMed Central Google Scholar
Fleig, L. et al. Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. Mol. Cell47, 558–569 (2012). CASPubMed Google Scholar
Feige, M.J. & Hendershot, L.M. Quality control of integral membrane proteins by assembly-dependent membrane integration. Mol. Cell51, 297–309 (2013). CASPubMedPubMed Central Google Scholar
Bordallo, J., Plemper, R.K., Finger, A. & Wolf, D.H. Der3p/Hrd1p is required for endoplasmic reticulum–associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell9, 209–222 (1998). CASPubMedPubMed Central Google Scholar
Sato, B.K., Schulz, D., Do, P.H. & Hampton, R.Y. Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol. Cell34, 212–222 (2009). CASPubMedPubMed Central Google Scholar
Carvalho, P., Stanley, A.M. & Rapoport, T.A. Retrotranslocation of a misfolded luminal ER protein by the ubiquitin-ligase Hrd1p. Cell143, 579–591 (2010).Refs.82and106used an elegantin vivocross-linking approach to characterize the interactions between a retrotranslocation substrate and the Hrd1p ubiquitin-ligase complex. The evidence suggests that Hrd1p and Der1p play essential parts in substrate recognition and/or retrotranslocation. CASPubMedPubMed Central Google Scholar
Klemm, E.J., Spooner, E. & Ploegh, H.L. Dual role of ancient ubiquitous protein 1 (AUP1) in lipid droplet accumulation and endoplasmic reticulum (ER) protein quality control. J. Biol. Chem.286, 37602–37614 (2011). CASPubMedPubMed Central Google Scholar
Jo, Y., Hartman, I.Z. & DeBose-Boyd, R.A. Ancient ubiquitous protein-1 mediates sterol-induced ubiquitination of 3-hydroxy-3-methylglutaryl CoA reductase in lipid droplet-associated endoplasmic reticulum membranes. Mol. Biol. Cell24, 169–183 (2013). CASPubMedPubMed Central Google Scholar
Olzmann, J.A., Richter, C.M. & Kopito, R.R. Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc. Natl. Acad. Sci. USA110, 1345–1350 (2013). CASPubMedPubMed Central Google Scholar
Ploegh, H.L. A lipid-based model for the creation of an escape hatch from the endoplasmic reticulum. Nature448, 435–438 (2007). CASPubMed Google Scholar
Olzmann, J.A. & Kopito, R.R. Lipid droplet formation is dispensable for endoplasmic reticulum–associated degradation. J. Biol. Chem.286, 27872–27874 (2011). CASPubMedPubMed Central Google Scholar
Duttler, S., Pechmann, S. & Frydman, J. Principles of cotranslational ubiquitination and quality control at the ribosome. Mol. Cell50, 379–393 (2013). CASPubMed Google Scholar
Sliter, D.A., Aguiar, M., Gygi, S.P. & Wojcikiewicz, R.J. Activated inositol 1,4,5-trisphosphate receptors are modified by homogeneous Lys-48- and Lys-63-linked ubiquitin chains, but only Lys-48-linked chains are required for degradation. J. Biol. Chem.286, 1074–1082 (2011). CASPubMed Google Scholar
Li, W., Tu, D., Brunger, A.T. & Ye, Y. A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature446, 333–337 (2007). CASPubMed Google Scholar
Xu, P. et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell137, 133–145 (2009). CASPubMedPubMed Central Google Scholar
Hampton, R.Y. & Sommer, T. Finding the will and the way of ERAD substrate retrotranslocation. Curr. Opin. Cell Biol.24, 460–466 (2012). CASPubMed Google Scholar
Wiertz, E.J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature384, 432–438 (1996). CASPubMed Google Scholar
Scott, D.C. & Schekman, R. Role of Sec61p in the ER-associated degradation of short-lived transmembrane proteins. J. Cell Biol.181, 1095–1105 (2008). CASPubMedPubMed Central Google Scholar
Pilon, M., Schekman, R. & Romisch, K. Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J.16, 4540–4548 (1997). CASPubMedPubMed Central Google Scholar
Zhou, M. & Schekman, R. The engagement of Sec61p in the ER dislocation process. Mol. Cell4, 925–934 (1999). CASPubMed Google Scholar
Van den Berg, B. et al. X-ray structure of a protein-conducting channel. Nature427, 36–44 (2004). CASPubMed Google Scholar
Greenblatt, E.J., Olzmann, J.A. & Kopito, R.R. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nat. Struct. Mol. Biol.18, 1147–1152 (2011). CASPubMedPubMed Central Google Scholar
Huang, C.H., Hsiao, H.T., Chu, Y.R., Ye, Y. & Chen, X. Derlin2 protein facilitates HRD1-mediated retro-translocation of sonic hedgehog at the endoplasmic reticulum. J. Biol. Chem.288, 25330–25339 (2013). CASPubMedPubMed Central Google Scholar
Wahlman, J. et al. Real-time fluorescence detection of ERAD substrate retrotranslocation in a mammalian in vitro system. Cell129, 943–955 (2007). CASPubMedPubMed Central Google Scholar
Knop, M., Finger, A., Braun, T., Hellmuth, K. & Wolf, D.H. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J.15, 753–763 (1996).Refs.101, 102and105reported a family of conserved multispanning membrane proteins essential for retrotranslocation of a subset of ERAD substrates. CASPubMedPubMed Central Google Scholar
Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T.A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature429, 841–847 (2004). CASPubMed Google Scholar
Kothe, M. et al. Role of p97 AAA-ATPase in the retrotranslocation of the cholera toxin A1 chain, a non-ubiquitinated substrate. J. Biol. Chem.280, 28127–28132 (2005). CASPubMed Google Scholar
Gauss, R., Sommer, T. & Jarosch, E. The Hrd1p ligase complex forms a linchpin between ER-lumenal substrate selection and Cdc48p recruitment. EMBO J.25, 1827–1835 (2006). CASPubMedPubMed Central Google Scholar
Lilley, B.N. & Ploegh, H.L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature429, 834–840 (2004). CASPubMed Google Scholar
Mehnert, M., Sommer, T. & Jarosch, E. Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane. Nat. Cell Biol.16, 77–86 (2014). CASPubMed Google Scholar
Gardner, R.G. et al. Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J. Cell Biol.151, 69–82 (2000). CASPubMedPubMed Central Google Scholar
Foresti, O., Ruggiano, A., Hannibal-Bach, H.K., Ejsing, C.S. & Carvalho, P. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4. Elife2, e00953 (2013). PubMedPubMed Central Google Scholar
Rubenstein, E.M., Kreft, S.G., Greenblatt, W., Swanson, R. & Hochstrasser, M. Aberrant substrate engagement of the ER translocon triggers degradation by the Hrd1 ubiquitin ligase. J. Cell Biol.197, 761–773 (2012). CASPubMedPubMed Central Google Scholar
Xu, S., Peng, G., Wang, Y., Fang, S. & Karbowski, M. The AAA-ATPase p97 is essential for outer mitochondrial membrane protein turnover. Mol. Biol. Cell22, 291–300 (2011). CASPubMedPubMed Central Google Scholar
Bolte, K. et al. Making new out of old: recycling and modification of an ancient protein translocation system during eukaryotic evolution. Mechanistic comparison and phylogenetic analysis of ERAD, SELMA and the peroxisomal importomer. Bioessays33, 368–376 (2011). CASPubMed Google Scholar
Barthelme, D. & Sauer, R.T. Identification of the Cdc48•20S proteasome as an ancient AAA+ proteolytic machine. Science337, 843–846 (2012). CASPubMedPubMed Central Google Scholar
Isakov, E. & Stanhill, A. Stalled proteasomes are directly relieved by P97 recruitment. J. Biol. Chem.286, 30274–30283 (2011). CASPubMedPubMed Central Google Scholar
Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell11, 3425–3439 (2000). CASPubMedPubMed Central Google Scholar
Lee, J.G. & Ye, Y. Bag6/Bat3/Scythe: a novel chaperone activity with diverse regulatory functions in protein biogenesis and degradation. Bioessays35, 377–385 (2013). CASPubMed Google Scholar
Minami, R. et al. BAG-6 is essential for selective elimination of defective proteasomal substrates. J. Cell Biol.190, 637–650 (2010). CASPubMedPubMed Central Google Scholar
Ahner, A., Nakatsukasa, K., Zhang, H., Frizzell, R.A. & Brodsky, J.L. Small heat-shock proteins select deltaF508-CFTR for endoplasmic reticulum-associated degradation. Mol. Biol. Cell18, 806–814 (2007). CASPubMedPubMed Central Google Scholar
Grotzke, J.E., Lu, Q. & Cresswell, P. Deglycosylation-dependent fluorescent proteins provide unique tools for the study of ER-associated degradation. Proc. Natl. Acad. Sci. USA110, 3393–3398 (2013). CASPubMedPubMed Central Google Scholar
Wang, X., Yu, Y.Y., Myers, N. & Hansen, T.H. Decoupling the role of ubiquitination for the dislocation versus degradation of major histocompatibility complex (MHC) class I proteins during endoplasmic reticulum-associated degradation (ERAD). J. Biol. Chem.288, 23295–23306 (2013). CASPubMedPubMed Central Google Scholar
Zhong, Y. & Fang, S. Live cell imaging of protein dislocation from the endoplasmic reticulum. J. Biol. Chem.287, 28057–28066 (2012). CASPubMedPubMed Central Google Scholar
Metzger, M.B. et al. A structurally unique E2-binding domain activates ubiquitination by the ERAD E2, Ubc7p, through multiple mechanisms. Mol. Cell50, 516–527 (2013). CASPubMedPubMed Central Google Scholar
Kostova, Z., Mariano, J., Scholz, S., Koenig, C. & Weissman, A.M.A. Ubc7p-binding domain in Cue1p activates ER-associated protein degradation. J. Cell Sci.122, 1374–1381 (2009). CASPubMedPubMed Central Google Scholar
Das, R. et al. Allosteric activation of E2-RING finger–mediated ubiquitylation by a structurally defined specific E2-binding region of gp78. Mol. Cell34, 674–685 (2009). CASPubMedPubMed Central Google Scholar
Li, W. et al. Mechanistic insights into active site–associated polyubiquitination by the ubiquitin-conjugating enzyme Ube2g2. Proc. Natl. Acad. Sci. USA106, 3722–3727 (2009). CASPubMedPubMed Central Google Scholar
Bagola, K. et al. Ubiquitin binding by a CUE domain regulates ubiquitin chain formation by ERAD E3 ligases. Mol. Cell50, 528–539 (2013). CASPubMed Google Scholar
Liu, S. et al. Promiscuous interactions of gp78 E3 ligase CUE domain with polyubiquitin chains. Structure20, 2138–2150 (2012). CASPubMedPubMed Central Google Scholar
Chen, B. et al. The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc. Natl. Acad. Sci. USA103, 341–346 (2006). CASPubMedPubMed Central Google Scholar
Koegl, M. et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell96, 635–644 (1999). CASPubMed Google Scholar
Hatakeyama, S., Yada, M., Matsumoto, M., Ishida, N. & Nakayama, K.I. U box proteins as a new family of ubiquitin-protein ligases. J. Biol. Chem.276, 33111–33120 (2001). CASPubMed Google Scholar
Nakatsukasa, K., Huyer, G., Michaelis, S. & Brodsky, J.L. Dissecting the ER-associated degradation of a misfolded polytopic membrane protein. Cell132, 101–112 (2008). CASPubMedPubMed Central Google Scholar
Meacham, G.C., Patterson, C., Zhang, W., Younger, J.M. & Cyr, D.M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell Biol.3, 100–105 (2001). CASPubMed Google Scholar