A unique binding mode enables MCM2 to chaperone histones H3–H4 at replication forks (original) (raw)
Alabert, C. & Groth, A. Chromatin replication and epigenome maintenance. Nat. Rev. Mol. Cell Biol.13, 153–167 (2012). ArticleCAS Google Scholar
Hake, S.B. & Allis, C.D. Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc. Natl. Acad. Sci. USA103, 6428–6435 (2006). ArticleCAS Google Scholar
Margueron, R. & Reinberg, D. Chromatin structure and the inheritance of epigenetic information. Nat. Rev. Genet.11, 285–296 (2010). ArticleCAS Google Scholar
Probst, A.V., Dunleavy, E. & Almouzni, G. Epigenetic inheritance during the cell cycle. Nat. Rev. Mol. Cell Biol.10, 192–206 (2009). ArticleCAS Google Scholar
Shibahara, K. & Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell96, 575–585 (1999). ArticleCAS Google Scholar
Zhang, Z., Shibahara, K. & Stillman, B. PCNA connects DNA replication to epigenetic inheritance in yeast. Nature408, 221–225 (2000). ArticleCAS Google Scholar
Groth, A. et al. Regulation of replication fork progression through histone supply and demand. Science318, 1928–1931 (2007). ArticleCAS Google Scholar
Ishimi, Y., Komamura-Kohno, Y., Arai, K. & Masai, H. Biochemical activities associated with mouse Mcm2 protein. J. Biol. Chem.276, 42744–42752 (2001). ArticleCAS Google Scholar
Jasencakova, Z. et al. Replication stress interferes with histone recycling and predeposition marking of new histones. Mol. Cell37, 736–743 (2010). ArticleCAS Google Scholar
Bochman, M.L. & Schwacha, A. The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol. Mol. Biol. Rev.73, 652–683 (2009). ArticleCAS Google Scholar
Boos, D., Frigola, J. & Diffley, J.F. Activation of the replicative DNA helicase: breaking up is hard to do. Curr. Opin. Cell Biol.24, 423–430 (2012). ArticleCAS Google Scholar
McKnight, S.L. & Miller, O.L. Jr. Electron microscopic analysis of chromatin replication in the cellular blastoderm Drosophila melanogaster embryo. Cell12, 795–804 (1977). ArticleCAS Google Scholar
Sogo, J.M., Stahl, H., Koller, T. & Knippers, R. Structure of replicating simian virus 40 minichromosomes: the replication fork, core histone segregation and terminal structures. J. Mol. Biol.189, 189–204 (1986). ArticleCAS Google Scholar
Annunziato, A.T. Split decision: what happens to nucleosomes during DNA replication? J. Biol. Chem.280, 12065–12068 (2005). ArticleCAS Google Scholar
Jackson, V. & Chalkley, R. A new method for the isolation of replicative chromatin: selective deposition of histone on both new and old DNA. Cell23, 121–134 (1981). ArticleCAS Google Scholar
Annunziato, A.T. Assembling chromatin: the long and winding road. Biochim. Biophys. Acta1819, 196–210 (2013). Article Google Scholar
Smith, S. & Stillman, B. Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell58, 15–25 (1989). ArticleCAS Google Scholar
Tagami, H., Ray-Gallet, D., Almouzni, G. & Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell116, 51–61 (2004). ArticleCAS Google Scholar
Tyler, J.K. et al. The RCAF complex mediates chromatin assembly during DNA replication and repair. Nature402, 555–560 (1999). ArticleCAS Google Scholar
Burgess, R.J. & Zhang, Z. Histone chaperones in nucleosome assembly and human disease. Nat. Struct. Mol. Biol.20, 14–22 (2013). ArticleCAS Google Scholar
Ransom, M., Dennehey, B.K. & Tyler, J.K. Chaperoning histones during DNA replication and repair. Cell140, 183–195 (2010). ArticleCAS Google Scholar
Foltman, M. et al. Eukaryotic replisome components cooperate to process histones during chromosome replication. Cell Reports3, 892–904 (2013). ArticleCAS Google Scholar
Ishimi, Y., Komamura, Y., You, Z. & Kimura, H. Biochemical function of mouse minichromosome maintenance 2 protein. J. Biol. Chem.273, 8369–8375 (1998). ArticleCAS Google Scholar
Richet, N. et al. Structural insight into how the human helicase subunit MCM2 may act as a histone chaperone together with ASF1 at the replication fork. Nucleic Acids Res.43, 1905–1917 (2015). ArticleCAS Google Scholar
English, C.M., Adkins, M.W., Carson, J.J., Churchill, M.E. & Tyler, J.K. Structural basis for the histone chaperone activity of Asf1. Cell127, 495–508 (2006). ArticleCAS Google Scholar
Natsume, R. et al. Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature446, 338–341 (2007). ArticleCAS Google Scholar
Loyola, A., Bonaldi, T., Roche, D., Imhof, A. & Almouzni, G. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol. Cell24, 309–316 (2006). ArticleCAS Google Scholar
Mello, J.A. & Almouzni, G. The ins and outs of nucleosome assembly. Curr. Opin. Genet. Dev.11, 136–141 (2001). ArticleCAS Google Scholar
Groth, A. et al. Human Asf1 regulates the flow of S phase histones during replicational stress. Mol. Cell17, 301–311 (2005). ArticleCAS Google Scholar
Dimitrova, D.S., Todorov, I.T., Melendy, T. & Gilbert, D.M. Mcm2, but not RPA, is a component of the mammalian early G1-phase prereplication complex. J. Cell Biol.146, 709–722 (1999). ArticleCAS Google Scholar
Montagnoli, A. et al. Identification of Mcm2 phosphorylation sites by S-phase-regulating kinases. J. Biol. Chem.281, 10281–10290 (2006). ArticleCAS Google Scholar
Ge, X.Q., Jackson, D.A. & Blow, J.J. Dormant origins licensed by excess Mcm2–7 are required for human cells to survive replicative stress. Genes Dev.21, 3331–3341 (2007). ArticleCAS Google Scholar
Gillespie, P.J. & Blow, J.J. Clusters, factories and domains: the complex structure of S-phase comes into focus. Cell Cycle9, 3218–3226 (2010). ArticleCAS Google Scholar
Alabert, C. et al. Two distinct modes for propagation of histone PTMs across the cell cycle. Genes Dev.29, 585–590 (2015). ArticleCAS Google Scholar
Bodor, D.L., Valente, L.P., Mata, J.F., Black, B.E. & Jansen, L.E. Assembly in G1 phase and long-term stability are unique intrinsic features of CENP-A nucleosomes. Mol. Biol. Cell24, 923–932 (2013). ArticleCAS Google Scholar
Latreille, D., Bluy, L., Benkirane, M. & Kiernan, R.E. Identification of histone 3 variant 2 interacting factors. Nucleic Acids Res.42, 3542–3550 (2014). ArticleCAS Google Scholar
Tachiwana, H. et al. Crystal structure of the human centromeric nucleosome containing CENP-A. Nature476, 232–235 (2011). ArticleCAS Google Scholar
Dunleavy, E.M. et al. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell137, 485–497 (2009). ArticleCAS Google Scholar
Foltz, D.R. et al. Centromere-specific assembly of CENP-a nucleosomes is mediated by HJURP. Cell137, 472–484 (2009). ArticleCAS Google Scholar
Kaufman, P.D., Kobayashi, R. & Stillman, B. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev.11, 345–357 (1997). ArticleCAS Google Scholar
Hoek, M. & Stillman, B. Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc. Natl. Acad. Sci. USA100, 12183–12188 (2003). ArticleCAS Google Scholar
Klapholz, B. et al. CAF-1 is required for efficient replication of euchromatic DNA in Drosophila larval endocycling cells. Chromosoma118, 235–248 (2009). ArticleCAS Google Scholar
Mejlvang, J. et al. New histone supply regulates replication fork speed and PCNA unloading. J. Cell Biol.204, 29–43 (2014). ArticleCAS Google Scholar
Houlard, M. et al. CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells. PLoS Genet.2, e181 (2006). Article Google Scholar
Song, Y. et al. CAF-1 is essential for Drosophila development and involved in the maintenance of epigenetic memory. Dev. Biol.311, 213–222 (2007). ArticleCAS Google Scholar
Groth, A. Replicating chromatin: a tale of histones. Biochem. Cell Biol.87, 51–63 (2009). ArticleCAS Google Scholar
Xu, M. et al. Partitioning of histone H3–H4 tetramers during DNA replication-dependent chromatin assembly. Science328, 94–98 (2010). ArticleCAS Google Scholar
Huang, C. et al. H3.3–H4 tetramer splitting events feature cell-type specific enhancers. PLoS Genet.9, e1003558 (2013). ArticleCAS Google Scholar
Hu, H. et al. Structure of a CENP-A-histone H4 heterodimer in complex with chaperone HJURP. Genes Dev.25, 901–906 (2011). ArticleCAS Google Scholar
Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. & Richmond, T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature389, 251–260 (1997). ArticleCAS Google Scholar
Amaro, A.C. et al. Molecular control of kinetochore-microtubule dynamics and chromosome oscillations. Nat. Cell Biol.12, 319–329 (2010). ArticleCAS Google Scholar
McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr.40, 658–674 (2007). ArticleCAS Google Scholar
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60, 2126–2132 (2004). Article Google Scholar
Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr.58, 1948–1954 (2002). Article Google Scholar
Fujita, M., Kiyono, T., Hayashi, Y. & Ishibashi, M. In vivo interaction of human MCM heterohexameric complexes with chromatin: possible involvement of ATP. J. Biol. Chem.272, 10928–10935 (1997). ArticleCAS Google Scholar
Jansen, L.E., Black, B.E., Foltz, D.R. & Cleveland, D.W. Propagation of centromeric chromatin requires exit from mitosis. J. Cell Biol.176, 795–805 (2007). ArticleCAS Google Scholar