The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity (original) (raw)

References

  1. Dreyfuss, G., Kim, V.N. & Kataoka, N. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3, 195–205 (2002).
    Article CAS PubMed Google Scholar
  2. Le Hir, H., Izaurralde, E., Maquat, L.E. & Moore, M.J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J. 19, 6860–6869 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  3. Dostie, J. & Dreyfuss, G. Translation is required to remove Y14 from mRNAs in the cytoplasm. Curr. Biol. 12, 1060–1067 (2002).
    Article CAS PubMed Google Scholar
  4. Lejeune, F., Ishigaki, Y., Li, X. & Maquat, L.E. The exon junction complex is detected on CBP80-bound but not eIF4E-bound mRNA in mammalian cells: dynamics of mRNP remodeling. EMBO J. 21, 3536–3545 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  5. Le Hir, H., Gatfield, D., Izaurralde, E. & Moore, M.J. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997 (2001a).
    Article CAS PubMed PubMed Central Google Scholar
  6. Wiegand, H.L., Lu, S. & Cullen, B.R. Exon junction complexes mediate the enhancing effect of splicing on mRNA expression. Proc. Natl. Acad. Sci. USA 100, 11327–11332 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  7. Nott, A., Le Hir, H. & Moore, M.J. Splicing enhances translation in mammalian cells: an additional function of the exon junction complex. Genes Dev. 18, 210–222 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  8. Maquat, L.E. Nonsense-mediated mRNA decay: splicing, translation and mRNP dynamics. Nat. Rev. Mol. Cell Biol. 5, 89–99 (2004).
    Article CAS PubMed Google Scholar
  9. Hachet, O. & Ephrussi, A. Drosophila Y14 shuttles to the posterior of the oocyte and is required for oskar mRNA transport. Curr. Biol. 11, 1666–1674 (2001).
    Article CAS PubMed Google Scholar
  10. Mohr, S.E., Dillon, S.T. & Boswell, R.E. The RNA-binding protein Tsunagi interacts with Mago Nashi to establish polarity and localize oskar mRNA during Drosophila oogenesis. Genes Dev. 15, 2886–2899 (2001).
    CAS PubMed PubMed Central Google Scholar
  11. Palacios, I.M., Gatfield, D., St Johnston, D. & Izaurralde, E. An eIF4AIII-containing complex required for mRNA localization and nonsense-mediated mRNA decay. Nature 427, 753–757 (2004).
    Article CAS PubMed Google Scholar
  12. Le Hir, H., Nott, A. & Moore, M.J. How introns influence and enhance eukaryotic gene expression. Trends Biochem. Sci. 28, 215–220 (2003).
    Article CAS PubMed Google Scholar
  13. Tange, T.O., Nott, A. & Moore, M.J. The ever-increasing complexities of the exon junction complex. Curr. Opin. Cell Biol. 16, 279–284 (2004).
    Article CAS PubMed Google Scholar
  14. Degot, S. et al. Association of the breast cancer protein MLN51 with the exon junction complex via its speckle localizer and RNA binding module. J. Biol. Chem. 279, 33702–33715 (2004).
    Article CAS PubMed Google Scholar
  15. Le Hir, H., Gatfield, D., Braun, I.C., Forler, D. & Izaurralde, E. The protein Mago provides a link between splicing and mRNA localization. EMBO Rep. 2, 1119–1124 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  16. Kataoka, N., Diem, M.D., Kim, V.N., Yong, J. & Dreyfuss, G. Magoh, a human homolog of Drosophila mago nashi protein, is a component of the splicing-dependent exon-exon junction complex. EMBO J. 20, 6424–6433 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  17. Kim, V.N. et al. The Y14 protein communicates to the cytoplasm the position of exon-exon junctions. EMBO J. 20, 2062–2068 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  18. Chan, C.C. et al. eIF4A3 is a novel component of the exon junction complex. RNA 10, 200–209 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  19. Ferraiuolo, M.A. et al. A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. Proc. Natl. Acad. Sci. USA 101, 4118–4123 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  20. Gatfield, D. et al. The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila. Curr. Biol. 11, 1716–1721 (2001).
    Article CAS PubMed Google Scholar
  21. Li, C., Lin, R.I., Lai, M.C., Ouyang, P. & Tarn, W.Y. Nuclear Pnn/DRS protein binds to spliced mRNPs and participates in mRNA processing and export via interaction with RNPS1. Mol. Cell. Biol. 23, 7363–7376 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  22. Shibuya, T., Tange, T.O., Sonenberg, N. & Moore, M.J. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat. Struct. Mol. Biol. 11, 346–351 (2004).
    Article CAS PubMed Google Scholar
  23. Reichert, V.L., Le Hir, H., Jurica, M.S. & Moore, M.J. 5′ exon interactions within the human spliceosome establish a framework for exon junction complex structure and assembly. Genes Dev. 16, 2778–2791 (2002).
    Article CAS PubMed PubMed Central Google Scholar
  24. Fribourg, S., Gatfield, D., Izaurralde, E. & Conti, E. A novel mode of RBD-protein recognition in the Y14-Mago complex. Nat. Struct. Biol. 10, 433–439 (2003).
    Article CAS PubMed Google Scholar
  25. Lau, C.K., Diem, M.D., Dreyfuss, G. & Van Duyne, G.D. Structure of the Y14-Magoh core of the exon junction complex. Curr. Biol. 13, 933–941 (2003).
    Article CAS PubMed Google Scholar
  26. Shi, H. & Xu, R.M. Crystal structure of the Drosophila Mago nashi-Y14 complex. Genes Dev. 17, 971–976 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  27. Tanner, N.K. & Linder, P. DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol. Cell 8, 251–262 (2001).
    Article CAS PubMed Google Scholar
  28. Li, Q. et al. Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII. Mol. Cell. Biol. 19, 7336–7346 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  29. Lorsch, J.R. & Herschlag, D. The DEAD box protein eIF4A. 1. A minimal kinetic and thermodynamic framework reveals coupled binding of RNA and nucleotide. Biochemistry 37, 2180–2193 (1998).
    Article CAS PubMed Google Scholar
  30. Lorsch, J.R. & Herschlag, D. The DEAD box protein eIF4A. 2. A cycle of nucleotide and RNA-dependent conformational changes. Biochemistry 37, 2194–2206 (1998).
    Article CAS PubMed Google Scholar
  31. Tanner, N.K., Cordin, O., Banroques, J., Doere, M. & Linder, P. The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol. Cell 11, 127–138 (2003).
    Article CAS PubMed Google Scholar
  32. Custodio, N. et al. In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. RNA 10, 622–633 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  33. Misteli, T. Cell biology of transcription and pre-mRNA splicing: nuclear architecture meets nuclear function. J. Cell Sci. 113, 1841–1849 (2000).
    CAS PubMed Google Scholar
  34. Rocak, S. & Linder, P. DEAD-box proteins: the driving forces behind RNA metabolism. Nat. Rev. Mol. Cell Biol. 5, 232–241 (2004).
    Article CAS PubMed Google Scholar
  35. Rogers, G.W., Jr., Richter, N.J., Lima, W.F. & Merrick, W.C. Modulation of the helicase activity of eIF4A by eIF4B, eIF4H, and eIF4F. J. Biol. Chem. 276, 30914–30922 (2001).
    Article CAS PubMed Google Scholar
  36. Korneeva, N.L., First, E.A., Benoit, C.A. & Rhoads, R.E. Interaction between the NH2-terminal domain of eIF4A and the central domain of eIF4G modulates RNA-stimulated ATPase activity. J. Biol. Chem. 280, 1872–1881 (2005).
    Article CAS PubMed Google Scholar
  37. Cordin, O., Tanner, N.K., Doere, M., Linder, P. & Banroques, J. The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity. EMBO J. 23, 2478–2487 (2004).
    Article CAS PubMed PubMed Central Google Scholar
  38. Caruthers, J.M. & McKay, D.B. Helicase structure and mechanism. Curr. Opin. Struct. Biol. 12, 123–133 (2002).
    Article CAS PubMed Google Scholar
  39. Caruthers, J.M., Johnson, E.R. & McKay, D.B. Crystal structure of yeast initiation factor 4A, a DEAD-box RNA helicase. Proc. Natl. Acad. Sci. USA 97, 13080–13085 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  40. Oguro, A., Ohtsu, T., Svitkin, Y.V., Sonenberg, N. & Nakamura, Y. RNA aptamers to initiation factor 4A helicase hinder cap-dependent translation by blocking ATP hydrolysis. RNA 9, 394–407 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  41. Gallego, M.E., Gattoni, R., Stevenin, J., Marie, J. & Expert-Bezancon, A. The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the beta-tropomyosin alternative exon 6A. EMBO J. 16, 1772–1784 (1997).
    Article CAS PubMed PubMed Central Google Scholar

Download references