Transcription factor regulatory networks in mammary epithelial development and tumorigenesis (original) (raw)
Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC et al. (2007). Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol9: 201–209. ArticleCASPubMed Google Scholar
Asselin-Labat ML, Vaillant F, Shackleton M, Bouras T, Lindeman GJ, Visvader JE . (2008). Delineating the epithelial hierarchy in the mouse mammary gland. Cold Spring Harb Symp Quant Biol73: 469–478. ArticleCASPubMed Google Scholar
Brisken C . (2002). Hormonal control of alveolar development and its implications for breast carcinogenesis. J Mammary Gland Biol Neoplasia7: 39–48. ArticlePubMed Google Scholar
Campbell LL, Polyak K . (2007). Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle6: 2332–2338. ArticleCASPubMed Google Scholar
Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K et al. (1999). Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev13: 2604–2616. ArticleCASPubMedPubMed Central Google Scholar
Choi YS, Chakrabarti R, Escamilla-Hernandez R, Sinha S . (2009). Elf5 conditional knockout mice reveal its role as a master regulator in mammary alveolar development: failure of Stat5 activation and functional differentiation in the absence of Elf5. Dev Biol329: 227–241. ArticleCASPubMed Google Scholar
Clevenger CV . (2003). Role of prolactin/prolactin receptor signaling in human breast cancer. Breast Dis18: 75–86. ArticleCASPubMed Google Scholar
Cotarla I, Ren S, Zhang Y, Gehan E, Singh B, Furth PA . (2004). Stat5a is tyrosine phosphorylated and nuclear localized in a high proportion of human breast cancers. Int J Cancer108: 665–671. ArticleCASPubMed Google Scholar
Dydensborg AB, Rose AA, Wilson BJ, Grote D, Paquet M, Giguere V et al. (2009). GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene28: 2634–2642. ArticleCASPubMed Google Scholar
Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT et al. (2008). A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med14: 1384–1389. ArticleCASPubMed Google Scholar
Fang SH, Chen Y, Weigel RJ . (2009). GATA-3 as a marker of hormone response in breast cancer. J Surg Res157: 290–295. ArticleCASPubMed Google Scholar
Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell1: 555–567. ArticleCASPubMedPubMed Central Google Scholar
Grimm SL, Rosen JM . (2003). The role of C/EBPbeta in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia8: 191–204. ArticlePubMed Google Scholar
Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G et al. (2006). Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell126: 489–502. ArticleCASPubMed Google Scholar
Guy CT, Cardiff RD, Muller WJ . (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol12: 954–961. ArticleCASPubMedPubMed Central Google Scholar
Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS et al. (2009). Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res69: 4116–4124. ArticleCASPubMedPubMed Central Google Scholar
Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al. (2007). Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol8: R76. ArticlePubMedPubMed Central Google Scholar
Humphreys RC, Bierie B, Zhao L, Raz R, Levy D, Hennighausen L . (2002). Deletion of Stat3 blocks mammary gland involution and extends functional competence of the secretory epithelium in the absence of lactogenic stimuli. Endocrinology143: 3641–3650. ArticleCASPubMed Google Scholar
Jackson-Fisher AJ, Bellinger G, Shum E, Duong JK, Perkins AS, Gassmann M et al. (2006). Formation of Neu/ErbB2-induced mammary tumors is unaffected by loss of ErbB4. Oncogene25: 5664–5672. ArticleCASPubMed Google Scholar
Jones FE, Welte T, Fu XY, Stern DF . (1999). ErbB4 signaling in the mammary gland is required for lobuloalveolar development and Stat5 activation during lactation. J Cell Biol147: 77–88. ArticleCASPubMedPubMed Central Google Scholar
Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ et al. (2008a). GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell13: 141–152. ArticleCASPubMedPubMed Central Google Scholar
Kouros-Mehr H, Kim JW, Bechis SK, Werb Z . (2008b). GATA-3 and the regulation of the mammary luminal cell fate. Curr Opin Cell Biol20: 164–170. ArticleCASPubMedPubMed Central Google Scholar
Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z . (2006). GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell127: 1041–1055. ArticleCASPubMedPubMed Central Google Scholar
Lamarca HL, Visbal AP, Creighton CJ, Liu H, Zhang Y, Behbod F et al. (2010). C/EBPbeta Regulates stem cell activity and specifies luminal cell fate in the mammary gland. Stem Cells (e-pub ahead of print).
Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med15: 907–913. ArticleCASPubMed Google Scholar
Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ et al. (2003). Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol163: 2113–2126. ArticlePubMedPubMed Central Google Scholar
Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L . (1997). Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev11: 179–186. ArticleCASPubMed Google Scholar
McDaniel SM, Rumer KK, Biroc SL, Metz RP, Singh M, Porter W et al. (2006). Remodeling of the mammary microenvironment after lactation promotes breast tumor cell metastasis. Am J Pathol168: 608–620. ArticleCASPubMedPubMed Central Google Scholar
Mehra R, Varambally S, Ding L, Shen R, Sabel MS, Ghosh D et al. (2005). Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res65: 11259–11264. ArticleCASPubMed Google Scholar
Miyoshi K, Shillingford JM, Smith GH, Grimm SL, Wagner KU, Oka T et al. (2001). Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J Cell Biol155: 531–542. ArticleCASPubMedPubMed Central Google Scholar
Molyneux G, Regan J, Smalley MJ . (2007). Mammary stem cells and breast cancer. Cell Mol Life Sci64: 3248–3260. ArticleCASPubMed Google Scholar
Oakes SR, Naylor MJ, Asselin-Labat ML, Blazek KD, Gardiner-Garden M, Hilton HN et al. (2008). The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev22: 581–586. ArticleCASPubMedPubMed Central Google Scholar
Pensa S, Watson CJ, Poli V . (2009). Stat3 and the inflammation/acute phase response in involution and breast cancer. J Mammary Gland Biol Neoplasia14: 121–129. ArticlePubMed Google Scholar
Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. (2000). Molecular portraits of human breast tumours. Nature406: 747–752. ArticleCASPubMed Google Scholar
Polyak K . (2007a). Breast cancer stem cells: a case of mistaken identity? Stem Cell Rev3: 107–109. ArticlePubMed Google Scholar
Ranger JJ, Levy DE, Shahalizadeh S, Hallett M, Muller WJ . (2009). Identification of a Stat3-dependent transcription regulatory network involved in metastatic progression. Cancer Res69: 6823–6830. ArticleCASPubMedPubMed Central Google Scholar
Ren S, Cai HR, Li M, Furth PA . (2002). Loss of Stat5a delays mammary cancer progression in a mouse model. Oncogene21: 4335–4339. ArticleCASPubMed Google Scholar
Schedin P, O′Brien J, Rudolph M, Stein T, Borges V . (2007). Microenvironment of the involuting mammary gland mediates mammary cancer progression. J Mammary Gland Biol Neoplasia12: 71–82. ArticlePubMed Google Scholar
Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature439: 84–88. ArticleCASPubMed Google Scholar
Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA98: 10869–10874. ArticleCASPubMedPubMed Central Google Scholar
Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA100: 8418–8423. ArticleCASPubMedPubMed Central Google Scholar
Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A et al. (2003). Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA100: 10393–10398. ArticleCASPubMedPubMed Central Google Scholar
Sternlicht MD, Kouros-Mehr H, Lu P, Werb Z . (2006). Hormonal and local control of mammary branching morphogenesis. Differentiation74: 365–381. ArticleCASPubMedPubMed Central Google Scholar
Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D et al. (2006a). Purification and unique properties of mammary epithelial stem cells. Nature439: 993–997. ArticleCASPubMed Google Scholar
Stingl J, Raouf A, Eirew P, Eaves CJ . (2006b). Deciphering the mammary epithelial cell hierarchy. Cell Cycle5: 1519–1522. ArticleCASPubMed Google Scholar
Thangaraju M, Rudelius M, Bierie B, Raffeld M, Sharan S, Hennighausen L et al. (2005). C/EBPdelta is a crucial regulator of pro-apoptotic gene expression during mammary gland involution. Development132: 4675–4685. ArticleCASPubMed Google Scholar
Tiffen PG, Omidvar N, Marquez-Almuina N, Croston D, Watson CJ, Clarkson RW . (2008). A dual role for oncostatin M signaling in the differentiation and death of mammary epithelial cells in vivo. Mol Endocrinol22: 2677–2688. ArticleCASPubMedPubMed Central Google Scholar
Tvorogov D, Sundvall M, Kurppa K, Hollmen M, Repo S, Johnson MS et al. (2009). Somatic mutations of ErbB4: selective loss-of-function phenotype affecting signal transduction pathways in cancer. J Biol Chem284: 5582–5591. ArticleCASPubMed Google Scholar
Vomachka AJ, Pratt SL, Lockefeer JA, Horseman ND . (2000). Prolactin gene-disruption arrests mammary gland development and retards T-antigen-induced tumor growth. Oncogene19: 1077–1084. ArticleCASPubMed Google Scholar
Wang S, Yuan Y, Liao L, Kuang SQ, Tien JC, O′Malley BW et al. (2009). Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proc Natl Acad Sci USA106: 151–156. ArticleCASPubMed Google Scholar
Yamaji D, Na R, Feuermann Y, Pechhold S, Chen W, Robinson GW et al. (2009). Development of mammary luminal progenitor cells is controlled by the transcription factor STAT5A. Genes Dev23: 2382–2387. ArticleCASPubMedPubMed Central Google Scholar
Zhang Y, Sif S, DeWille J . (2007). The mouse C/EBPdelta gene promoter is regulated by STAT3 and Sp1 transcriptional activators, chromatin remodeling and c-Myc repression. J Cell Biochem102: 1256–1270. ArticleCASPubMed Google Scholar
Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J et al. (2007). Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci USA104: 16158–16163. ArticleCASPubMedPubMed Central Google Scholar