- Visvader JE . Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 2009; 23: 2563–2577.
Article CAS PubMed PubMed Central Google Scholar
- Dontu G, El Ashry D, Wicha MS . Breast cancer, stem/progenitor cells and the estrogen receptor. Trends Endocrinol Metab 2004; 15: 193–197.
Article CAS PubMed Google Scholar
- Smith GH, Chepko G . Mammary epithelial stem cells. Microsc Res Tech 2001; 52: 190–203.
Article CAS PubMed Google Scholar
- Kordon EC, Smith GH . An entire functional mammary gland may comprise the progeny from a single cell. Development 1998; 125: 1921–1930.
CAS PubMed Google Scholar
- Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439: 84–88.
Article CAS PubMed Google Scholar
- Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006; 439: 993–997.
Article CAS PubMed Google Scholar
- DeOme KB, Faulkin LJ, Bern HA, Blair PB . Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 1959; 19: 515–520.
CAS PubMed Google Scholar
- Smith GH, Medina D . Re-evaluation of mammary stem cell biology based on in vivo transplantation. Breast Cancer Res 2008; 10: 203–208.
Article PubMed PubMed Central Google Scholar
- Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 2011; 479: 189–193.
Article CAS PubMed Google Scholar
- Heppner GH . Tumor heterogeneity. Cancer Res 1984; 44: 2259–2265.
CAS PubMed Google Scholar
- Shackleton M, Quintana E, Fearon ER, Morrison SJ . Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 2009; 138: 822–829.
Article CAS PubMed Google Scholar
- Illmensee K, Mintz B . Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc Natl Acad Sci USA 1976; 73: 549–553.
Article CAS PubMed PubMed Central Google Scholar
- Bussard KM, Boulanger CA, Booth BW, Bruno RD, Smith GH . Reprogramming human cancer cells in the mouse mammary gland. Cancer Res 2010; 70: 6336–6343.
Article CAS PubMed PubMed Central Google Scholar
- Booth BW, Boulanger CA, Anderson LH, Smith GH . The normal mammary microenvironment suppresses the tumorigenic phenotype of mouse mammary tumor virus-neu-transformed mammary tumor cells. Oncogene 2011; 30: 679–689.
Article CAS PubMed Google Scholar
- Clarke MF, Fuller M . Stem cells and cancer: two faces of eve. Cell 2006; 124: 1111–1115.
Article CAS PubMed Google Scholar
- Jordan CT, Guzman ML, Noble M . Cancer stem cells. N Engl J Med 2006; 355: 1253–1261.
Article CAS PubMed Google Scholar
- Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.
Article CAS PubMed Google Scholar
- Gupta PB, Chaffer CL, Weinberg RA . Cancer stem cells: mirage or reality? Nat Med 2009; 15: 1010–1012.
Article CAS PubMed Google Scholar
- Clevers H . The cancer stem cell: premises, promises and challenges. Nat Med 2011; 17: 313–319.
CAS PubMed Google Scholar
- Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J, Susky E et al. Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 2010; 7: 279–282.
Article CAS PubMed PubMed Central Google Scholar
- Dirks PB . Cancer: stem cells and brain tumours. Nature 2006; 444: 687–688.
Article CAS PubMed Google Scholar
- Cho RW, Wang X, Diehn M, Shedden K, Chen GY, Sherlock G et al. Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells 2008; 26: 364–371.
Article CAS PubMed Google Scholar
- Liu JC, Deng T, Lehal RS, Kim J, Zacksenhaus E . Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors. Cancer Res 2007; 67: 8671–8681.
Article CAS PubMed Google Scholar
- Zhang M, Behbod F, Atkinson RL, Landis MD, Kittrell F, Edwards D et al. Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res 2008; 68: 4674–4682.
Article CAS PubMed PubMed Central Google Scholar
- Vaillant F, Asselin-Labat ML, Shackleton M, Forrest NC, Lindeman GJ, Visvader JE . The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 2008; 68: 7711–7717.
Article CAS PubMed Google Scholar
- Li Z, Tognon CE, Godinho FJ, Yasaitis L, Hock H, Herschkowitz JI et al. ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex. Cancer Cell 2007; 12: 542–558.
Article CAS PubMed PubMed Central Google Scholar
- Liu BY, McDermott SP, Khwaja SS, Alexander CM . The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA 2004; 101: 4158–4163.
Article CAS PubMed PubMed Central Google Scholar
- Baker M . Melanoma in mice casts doubt on scarcity of cancer stem cells. Nature 2008; 456: 553.
Article CAS PubMed Google Scholar
- Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A . Tumor growth need not be driven by rare cancer stem cells. Science 2007; 317: 337.
Article CAS PubMed Google Scholar
- Zheng X, Shen G, Yang X, Liu W . Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res 2007; 67: 3691–3697.
Article CAS PubMed Google Scholar
- Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ . Efficient tumour formation by single human melanoma cells. Nature 2008; 456: 593–598.
Article CAS PubMed PubMed Central Google Scholar
- Hill RP . Identifying cancer stem cells in solid tumors: case not proven. Cancer Res 2006; 66: 1891–1895.
Article CAS PubMed Google Scholar
- Rosen JM, Jordan CT . The increasing complexity of the cancer stem cell paradigm. Science 2009; 324: 1670–1673.
Article CAS PubMed PubMed Central Google Scholar
- Polyak K, Hahn WC . Roots and stems: stem cells in cancer. Nat Med 2006; 12: 296–300.
Article CAS PubMed Google Scholar
- Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA 2003; 100: 15853–15858.
Article CAS PubMed PubMed Central Google Scholar
- Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H, Natrajan R et al. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 2010; 7: 403–417.
Article CAS PubMed Google Scholar
- Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15: 907–913.
Article CAS PubMed Google Scholar
- Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 2011; 8: 149–163.
Article CAS PubMed PubMed Central Google Scholar
- Callahan R, Egan SE . Notch signaling in mammary development and oncogenesis. J Mammary Gland Biol Neoplasia 2004; 9: 145–163.
Article PubMed Google Scholar
- Robinson DR, Kalyana-Sundaram S, Wu YM, Shankar S, Cao X, Ateeq B et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med 2011; 17: 1646–1651.
Article CAS PubMed PubMed Central Google Scholar
- Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS . Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 2004; 6: R605–R615.
Article CAS PubMed PubMed Central Google Scholar
- Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat ML, Oakes SR et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 2008; 3: 429–441.
Article CAS PubMed Google Scholar
- Ling H, Sylvestre JR, Jolicoeur P . Notch1-induced mammary tumor development is cyclin D1-dependent and correlates with expansion of pre-malignant multipotent duct-limited progenitors. Oncogene 2010; 29: 4543–4554.
Article CAS PubMed Google Scholar
- Grimshaw MJ, Cooper L, Papazisis K, Coleman JA, Bohnenkamp HR, Chiapero-Stanke L et al. Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells. Breast Cancer Res 2008; 10: R52.
Article PubMed PubMed Central Google Scholar
- Dontu G, Wicha MS . Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia. J Mammary Gland Biol Neoplasia 2005; 10: 75–86.
Article PubMed Google Scholar
- Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 2007; 117: 3988–4002.
Article CAS PubMed PubMed Central Google Scholar
- Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 2010; 140: 62–73.
Article CAS PubMed Google Scholar
- Hu C, Dievart A, Lupien M, Calvo E, Tremblay G, Jolicoeur P . Overexpression of activated murine Notch1 and Notch3 in transgenic mice blocks mammary gland development and induces mammary tumors. Am J Patho 2006; 168: 973–990.
Article CAS Google Scholar
- Hu Y, Smyth GK . ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 2009; 347: 70–78.
Article CAS PubMed Google Scholar