Analysis of the combined action of miR-143 and miR-145 on oncogenic pathways in colorectal cancer cells reveals a coordinate program of gene repression (original) (raw)
Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009; 460: 705–710. CASPubMedPubMed Central Google Scholar
Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N, Akao Y . Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology 2009; 77: 12–21. ArticleCASPubMed Google Scholar
Gao W, Yu Y, Cao H, Shen H, Li X, Pan S et al. Deregulated expression of miR-21, miR-143 and miR-181a in non small cell lung cancer is related to clinicopathologic characteristics or patient prognosis. Biomed Pharmacother 2010; 64: 399–408. ArticleCASPubMed Google Scholar
Bockmeyer CL, Christgen M, Muller M, Fischer S, Ahrens P, Langer F et al. MicroRNA profiles of healthy basal and luminal mammary epithelial cells are distinct and reflected in different breast cancer subtypes. Breast Cancer Res Treat 2011; 130: 735–745. ArticleCASPubMed Google Scholar
Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K . Modulation of microRNA processing by p53. Nature 2009; 460: 529–533. ArticleCASPubMed Google Scholar
Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 2009; 106: 3207–3212. ArticleCASPubMedPubMed Central Google Scholar
Kent OA, Chivukula RR, Mullendore M, Wentzel EA, Feldmann G, Lee KH et al. Repression of the miR-143/145 cluster by oncogenic Ras initiates a tumor-promoting feed-forward pathway. Genes Dev 2010; 24: 2754–2759. ArticleCASPubMedPubMed Central Google Scholar
Villadsen SB, Bramsen JB, Ostenfeld MS, Wiklund ED, Fristrup N, Gao S et al. The miR-143/-145 cluster regulates plasminogen activator inhibitor-1 in bladder cancer. Br J Cancer 2011; 106: 366–374. ArticlePubMedPubMed Central Google Scholar
Batliner J, Buehrer E, Fey MF, Tschan MP . Inhibition of the miR-143/145 cluster attenuated neutrophil differentiation of APL cells. Leuk Res 2012; 36: 237–240. ArticleCASPubMed Google Scholar
Shi B, Sepp-Lorenzino L, Prisco M, Linsley P, deAngelis T, Baserga R et al. 145 targets the insulin receptor substrate-1 and inhibits the growth of colon cancer cells. J Biol Chem 2007; 282: 32582–32590. ArticleCASPubMed Google Scholar
Ng EK, Tsang WP, Ng SS, Jin HC, Yu J, Li JJ et al. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer 2009; 101: 699–706. ArticleCASPubMedPubMed Central Google Scholar
Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004; 279: 52361–52365. ArticleCASPubMed Google Scholar
Godar S, Ince TA, Bell GW, Feldser D, Donaher JL, Bergh J et al. Growth-inhibitory and tumor- suppressive functions of p53 depend on its repression of CD44 expression. Cell 2008; 134: 62–73. ArticleCASPubMedPubMed Central Google Scholar
Baron U, Bujard H . Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol 2000; 327: 401–421. ArticleCASPubMed Google Scholar
Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y et al. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 2009; 28: 1385–1392. ArticleCASPubMed Google Scholar
Hsu JB, Chiu CM, Hsu SD, Huang WY, Chien CH, Lee TY et al. miRTar: an integrated system for identifying miRNA-target interactions in human. BMC Bioinformatics 2011; 12: 300. ArticleCASPubMedPubMed Central Google Scholar
Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-Craviari V et al. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat Genet 2011; 43: 242–245. ArticleCASPubMed Google Scholar
Elcheva I, Goswami S, Noubissi FK, Spiegelman VS . CRD-BP protects the coding region of betaTrCP1 mRNA from miR-183-mediated degradation. Mol Cell 2009; 35: 240–246. ArticleCASPubMedPubMed Central Google Scholar
Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798. ArticleCASPubMed Google Scholar
Nonne N, Ameyar-Zazoua M, Souidi M, Harel-Bellan A . Tandem affinity purification of miRNA target mRNAs (TAP Tar). Nucleic Acids Res 2010; 38: e20. ArticlePubMed Google Scholar
Guo H, Ingolia NT, Weissman JS, Bartel DP . Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010; 466: 835–840. ArticleCASPubMedPubMed Central Google Scholar
Huang da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57. ArticlePubMed Google Scholar
Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003; 4: P3. ArticlePubMed Google Scholar
Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N . Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58–63. ArticleCASPubMed Google Scholar
Zhu H, Dougherty U, Robinson V, Mustafi R, Pekow J, Kupfer S et al. EGFR signals downregulate tumor suppressors miR-143 and miR-145 in Western diet-promoted murine colo cancer: role of G1 regulators. MOl Cancer Res 2011; 9: 960–975. ArticleCASPubMed Google Scholar
Kent OA, Fox-Talbot K, Halushka MK . RREB1 repressed miR-143/145 modulates KRAS signaling through downregulation of multiple targets. Oncogene 2013; 32: 2576–2585.. ArticleCASPubMed Google Scholar
Kloosterman WP, Plasterk RH . The diverse functions of microRNAs in animal development and disease. Dev Cell 2006; 11: 441–450. ArticleCASPubMed Google Scholar
Rubinson DA, Dillon CP, Kwiatkowski AV, Sievers C, Yang L, Kopinja J et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet 2003; 33: 401–406. ArticleCASPubMed Google Scholar
Baron U, Gossen M, Bujard H . Tetracycline-controlled transcription in eukaryotes: novel transactivators with graded transactivation potential. Nucleic Acids Res 1997; 25: 2723–2729. ArticleCASPubMedPubMed Central Google Scholar
Ricci-Vitiani L, Pedini F, Mollinari C, Condorelli G, Bonci D, Bez A et al. Absence of caspase 8 and high expression of PED protect primitive neural cells from cell death. J Exp Med 2004; 200: 1257–1266. ArticleCASPubMedPubMed Central Google Scholar
Ricci-Vitiani L, Mollinari C, di Martino S, Biffoni M, Pilozzi E, Pagliuca A et al. Thymosin beta4 targeting impairs tumorigenic activity of colon cancer stem cells. Faseb J 2010; 24: 4291–4301. ArticleCASPubMed Google Scholar