Effects of selenium on coronary artery disease, type 2 diabetes and their risk factors: a Mendelian randomization study (original ) (raw )
Rayman MP. Selenium and human health. Lancet. 2012;379:1256–68. https://doi.org/10.1016/S0140-6736(11)61452-9 Article CAS PubMed Google Scholar
Rees K, Hartley L, Day C, Flowers N, Clarke A, Stranges S. Selenium supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013. https://doi.org/10.1002/14651858.CD009671.pub2 .
Vinceti M, Filippini T, Del Giovane C, Dennert G, Zwahlen M, Brinkman M et al. Selenium for preventing cancer. Cochrane Database Syst Rev. 2018. https://doi.org/10.1002/14651858.CD005195.pub4 .
Ju W, Li X, Li Z, Wu GR, Fu XF, Yang XM, et al. The effect of selenium supplementation on coronary heart disease: A systematic review and meta-analysis of randomized controlled trials. J Trace Elem Med Biol. 2017;44:8–16. https://doi.org/10.1016/j.jtemb.2017.04.009 Article CAS PubMed Google Scholar
Zhang X, Liu C, Guo J, Song Y. Selenium status and cardiovascular diseases: meta-analysis of prospective observational studies and randomized controlled trials. Eur J Clin Nutr. 2015;70:162–9.
Flores-Mateo G, Nanas-Acien A, Pastor-Barriuso R, Guallar E. Selenium and coronary heart disease: a meta-analysis. Am J Clin Nutr. 2006;84:762–73. https://doi.org/10.1093/ajcn/84.4.762 Article CAS PubMed Google Scholar
Vinceti M, Filippini T, Rothman K. Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. Eur J Epidemiol. 2018;33:789–810. https://doi.org/10.1007/s10654-018-0422-8 Article PubMed Google Scholar
Kim J, Chung HS, Choi M-K, Roh YK, Yoo HJ, Park JH, et al. Association between serum selenium level and the presence of diabetes mellitus: a meta-analysis of observational studies. Diabetes Metab J. 2019;43:e1.Article Google Scholar
Kohler LN, Foote J, Kelley CP, Florea A, Shelly C, Chow HHS, et al. Selenium and type 2 diabetes: systematic review. Nutrients. 2018;10:1924. https://doi.org/10.3390/nu10121924 Article CAS PubMed Central Google Scholar
Wang X-L, Yang T-B, Wei J, Lei G-H, Zeng C. Association between serum selenium level and type 2 diabetes mellitus: a non-linear dose–response meta-analysis of observational studies. Nutr J. 2016;15:48. https://doi.org/10.1186/s12937-016-0169-6 Article CAS PubMed PubMed Central Google Scholar
Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63. https://doi.org/10.1002/sim.3034 Article PubMed Google Scholar
Yarmolinsky J, Bonilla C, Haycock PC, Langdon RJQ, Lotta LA, Langenberg C, et al. Circulating Selenium and Prostate Cancer Risk: A Mendelian Randomization Analysis. JNCI: J Natl Cancer Inst. 2018;110:1035–8. https://doi.org/10.17863/CAM.27700 Article PubMed PubMed Central Google Scholar
Cornelis MC, Fornage M, Foy M, Xun P, Gladyshev VN, Morris S, et al. Genome-wide association study of selenium concentrations. Hum Mol Genet. 2015;24:1469–77. https://doi.org/10.1093/hmg/ddu546 Article CAS PubMed Google Scholar
Evans DM, Zhu G, Dy V, Heath AC, Madden PAF, Kemp JP, et al. Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Hum Mol Genet. 2013;22:3998–4006. https://doi.org/10.1093/hmg/ddt239 Article CAS PubMed PubMed Central Google Scholar
Nelson CP, Goel A, Butterworth AS, Kanoni S, Webb TR, Marouli E, et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat Genet. 2017;49**:**1385–91.
Nikpay M, Goel A, Won H-H, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1000 genomes–based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121–30. https://doi.org/10.1038/ng.3396 Article CAS PubMed PubMed Central Google Scholar
Willer C, Schmidt E, Sengupta S, Peloso G, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83. https://doi.org/10.1038/ng.2797 Article CAS PubMed PubMed Central Google Scholar
Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50:1505–13. https://doi.org/10.1038/s41588-018-0241-6 Article CAS PubMed PubMed Central Google Scholar
Wheeler E, Leong A, Liu CT, Hivert MF, Strawbridge RJ, Podmore C, et al. Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis. PLoS Med. 2017;14:e1002383. https://doi.org/10.17863/CAM.13618 Article PubMed PubMed Central Google Scholar
Manning AK, Hivert M-F, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet. 2012;44:659.
Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.
Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408 https://doi.org/10.7554/eLife.34408 Article PubMed PubMed Central Google Scholar
Burgess S, Zuber V, Valdes-Marquez E, Sun BB, Hopewell JC. Mendelian randomization with fine-mapped genetic data: choosing from large numbers of correlated instrumental variables. Genet Epidemiol. 2017;41:714–25. https://doi.org/10.1002/gepi.22077 Article PubMed PubMed Central Google Scholar
Greco MFD, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015;34:2926–40. https://doi.org/10.1002/sim.6522 Article Google Scholar
Burgess S, Thompson S. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32:377–89. https://doi.org/10.1007/s10654-017-0255-x Article PubMed PubMed Central Google Scholar
Burgess S, Thompson SG. Bias in causal estimates from Mendelian randomization studies with weak instruments. Stat Med. 2011;30:1312–23. https://doi.org/10.1002/sim.4197 Article PubMed Google Scholar
Freeman G, Cowling BJ, Schooling CM. Power and sample size calculations for Mendelian randomization studies using one genetic instrument. Int J Epidemiol. 2013;42:1157–63. https://doi.org/10.1093/ije/dyt110 Article PubMed Google Scholar
Rayman MP, Stranges S. Epidemiology of selenium and type 2 diabetes: Can we make sense of it? Free Radic Biol Med. 2013;65:1557–64. https://doi.org/10.1016/j.freeradbiomed.2013.04.003 Article CAS PubMed Google Scholar
Slotnick MJ, Nriagu JO. Validity of human nails as a biomarker of arsenic and selenium exposure: a review. Environ Res. 2006;102:125–39. https://doi.org/10.1016/j.envres.2005.12.001 Article CAS PubMed Google Scholar
Vinceti M, Filippini T, Wise LA. Environmental Selenium and Human Health: an Update. Curr Environ Health Rep. 2018;5:464–85. https://doi.org/10.1007/s40572-018-0213-0 . e-pub ahead of print 2018/10/04Article PubMed Google Scholar
Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1. https://doi.org/10.1093/bioinformatics/btq340 Article CAS PubMed PubMed Central Google Scholar
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14. https://doi.org/10.1002/gepi.21965 Article PubMed PubMed Central Google Scholar
Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8. https://doi.org/10.1038/s41588-018-0099-7 Article CAS PubMed PubMed Central Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.
Xiang S, Dai Z, Man C, Fan Y. Circulating selenium and cardiovascular or all-cause mortality in the general population: a meta-analysis. Biol Trace Elem Res. 2020;195:55–62. https://doi.org/10.1007/s12011-019-01847-8 Article CAS PubMed Google Scholar
Rayman MP, Stranges S, Griffin BA, Pastor-Barriuso R, Guallar E. Effect of supplementation with high-selenium yeast on plasma lipids: a randomized trial. Ann Intern Med. 2011;154:656–65. https://doi.org/10.7326/0003-4819-154-10-201105170-00005 Article PubMed Google Scholar
Jacobs ET, Lance P, Mandarino LJ, Ellis NA, Chow HHS, Foote J, et al. Selenium supplementation and insulin resistance in a randomized, clinical trial. BMJ Open Diabetes Res Care. 2019;7:e000613. https://doi.org/10.1136/bmjdrc-2018-000613 Article PubMed PubMed Central Google Scholar
Junxi L, Shiu Lun Au Y, Shi Lin L, Gabriel ML, Schooling CM. Liver enzymes and risk of ischemic heart disease and type 2 diabetes mellitus: a Mendelian Randomization Study. Sci Rep. 2016;6:38813. https://doi.org/10.1038/srep38813 Article CAS Google Scholar
Zhao J, Schooling C. Effect of linoleic acid on ischemic heart disease and its risk factors: a Mendelian randomization study. BMC Med. 2019;17:61. https://doi.org/10.1186/s12916-019-1293-x Article PubMed PubMed Central Google Scholar
Sattar N, Taskinen M-R. Statins are diabetogenic – Myth or reality? Atherosclerosis. 2012;13:1–10. https://doi.org/10.1016/j.atherosclerosissup.2012.06.001 Article CAS PubMed Google Scholar
Fall T, Xie W, Poon W, Yaghootkar H, Mägi R, Knowles JW, et al. Using genetic variants to assess the relationship between circulating lipids and type 2 diabetes. Diabetes. 2015;64:2676–84. https://doi.org/10.2337/db14-1710 Article CAS PubMed Google Scholar
Swerdlow DI, Preiss D, Kuchenbaecker KB, Holmes MV, Engmann JEL, Shah T, et al. HMG-coenzyme a reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet. 2015;385:351–61. https://doi.org/10.1016/S0140-6736(14)61183-1 Article CAS PubMed PubMed Central Google Scholar
Axsom K, Berger J, Schwartzbard A. Statins and diabetes: the good, the bad, and the unknown. Curr Atheroscler Rep. 2013;15:1–7. https://doi.org/10.1007/s11883-012-0299-z Article CAS Google Scholar
White J, Swerdlow DI, Preiss D, Fairhurst-Hunter Z, Keating BJ, Asselbergs FW, et al. Association of lipid fractions with risks for coronary artery disease and diabetes. JAMA Cardiol. 2016;1:692–9. https://doi.org/10.1001/jamacardio.2016.1884 Article PubMed PubMed Central Google Scholar
Ference BA, Robinson JG, Brook RD, Catapano AL, Chapman MJ, Neff DR, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl J Med. 2016;375:2144–53. https://doi.org/10.1056/NEJMoa1604304 Article CAS PubMed Google Scholar
Lotta LA, Sharp SJ, Burgess S, Perry JRB, Stewart ID, Willems SM, et al. Association between low-density lipoprotein cholesterol–lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA. 2016;316:1383–91. https://doi.org/10.1001/jama.2016.14568 Article CAS PubMed PubMed Central Google Scholar
Sabatine MS, Leiter LA, Wiviott SD, Giugliano RP, Deedwania P, De Ferrari GM, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5:941–50. https://doi.org/10.1016/S2213-8587(17)30313-3 Article CAS PubMed Google Scholar
Wu H, Shang H, Wu J. Effect of ezetimibe on glycemic control: a systematic review and meta-analysis of randomized controlled trials. Endocrine. 2018;60:229–39. https://doi.org/10.1007/s12020-018-1541-4 Article CAS PubMed Google Scholar
Nassir F, Moundras C, Bayle D, Sérougne C, Gueux E, Rock E, et al. Effect of selenium deficiency on hepatic lipid and lipoprotein metabolism in the rat. Br J Nutr. 1997;78:493–500. https://doi.org/10.1079/BJN19970166 Article CAS PubMed Google Scholar
McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F, et al. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci USA. 2004;101:8852–7. https://doi.org/10.1073/pnas.0308096101 Article CAS PubMed PubMed Central Google Scholar
Loh K, Deng H, Fukushima A, Cai X, Boivin B, Galic S, et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab. 2009;10:260–72. https://doi.org/10.1016/j.cmet.2009.08.009 Article CAS PubMed PubMed Central Google Scholar
Misu H, Takamura T, Takayama H, Hayashi H, Matsuzawa-Nagata N, Kurita S, et al. A liver-derived secretory protein, Selenoprotein P, causes insulin resistance. Cell Metab. 2010;12:483–95. https://doi.org/10.1016/j.cmet.2010.09.015 Article CAS PubMed Google Scholar
Huang T, Ren J, Huang J, Li D. Association of homocysteine with type 2 diabetes: a meta-analysis implementing Mendelian randomization approach. BMC Genom. 2013;14:867. https://doi.org/10.1186/1471-2164-14-867 Article CAS Google Scholar
Zhao JV, Schooling CM. Homocysteine-reducing B vitamins and ischemic heart disease: a separate-sample Mendelian randomization analysis. Eur J Clin Nutr. 2017;71:267–73. https://doi.org/10.1038/ejcn.2016.246 Article CAS PubMed Google Scholar
Lopez PM, Subramanian SV, Schooling CM. Effect measure modification conceptualized using selection diagrams as mediation by mechanisms of varying population-level relevance. J Clin Epidemiol. 2019;113:123–8. https://doi.org/10.1016/j.jclinepi.2019.05.005 Article PubMed Google Scholar
Staley J, Burgess S. Semiparametric methods for estimation of a nonlinear exposure-outcome relationship using instrumental variables with application to Mendelian randomization. 2017;41:341−52.
Schooling CM, Yeung SL, Freeman G. Mendelian randomization estimates may be inflated. J Am Coll Cardiol. 2013;61:1931. https://doi.org/10.1016/j.jacc.2012.12.049 Article PubMed Google Scholar
Jablonska E, Vinceti M. Selenium and human health: witnessing a copernican revolution? J Environ Sci Health, Part C. 2015;33:328–68. https://doi.org/10.1080/10590501.2015.1055163 Article CAS Google Scholar