Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases (original) (raw)
Vasan, R. S. Biomarkers of cardiovascular disease: molecular basis and practical considerations. Circulation113, 2335–2362 (2006). ArticlePubMed Google Scholar
Ebrahim, S. & Davey Smith, G. Mendelian randomization: can genetic epidemiology help redress the failures of observational epidemiology? Hum. Genet.123, 15–33 (2008). ArticlePubMed Google Scholar
Smith, G. D. & Ebrahim, S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol.32, 1–22 (2003). ArticlePubMed Google Scholar
Evans, D. M. & Smith, G. D. Mendelian randomization: new applications in the coming age of hypothesis-free causality. Annu. Rev. Genomics Hum. Genet.16, 327–350 (2015). ArticlePubMedCAS Google Scholar
Burgess, S., Bowden, J., Fall, T., Ingelsson, E. & Thompson, S. G. Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology28, 30–42 (2017). ArticlePubMed Google Scholar
Burgess, S. et al. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur. J. Epidemiol.30, 543–552 (2015). ArticlePubMedPubMed Central Google Scholar
Solovieff, N., Cotsapas, C., Lee, P. H., Purcell, S. M. & Smoller, J. W. Pleiotropy in complex traits: challenges and strategies. Nat. Rev. Genet.14, 483–495 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Gratten, J. & Visscher, P. M. Genetic pleiotropy in complex traits and diseases: implications for genomic medicine. Genome Med.8, 78 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Parkes, M., Cortes, A., van Heel, D. A. & Brown, M. A. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet.14, 661–673 (2013). ArticlePubMedCAS Google Scholar
Grassmann, F. et al. Genetic pleiotropy between age-related macular degeneration and 16 complex diseases and traits. Genome Med.9, 29 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Webb, T. R. et al. Systematic evaluation of pleiotropy identifies 6 further loci associated with coronary artery disease. J. Am. Coll. Cardiol.69, 823–836 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Greco, M. F. D., Minelli, C., Sheehan, N. A. & Thompson, J. R. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat. Med.34, 2926–2940 (2015). Article Google Scholar
Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Statist. Med. https://doi.org/10.1002/sim.7221 (2017).
Bowden, J. et al. Improving the accuracy of two-sample summary data Mendelian randomization: moving beyond the NOME assumption. bioRxivhttps://doi.org/10.1101/159442 (2017).
Bowden, J., Smith, G. D. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol.44, 512–525 (2015). ArticlePubMedPubMed Central Google Scholar
Bowden, J. et al. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the I2 statistic. Int. J. Epidemiol.45, 1961–1974 (2016). ArticlePubMedPubMed Central Google Scholar
Do, R. et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat. Genet.45, 1345–1352 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Burgess, S. & Thompson, S. G. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol.181, 251–260 (2015). ArticlePubMedPubMed Central Google Scholar
Corbin, L. J. et al. Body mass index as a modifiable risk factor for type 2 diabetes: refining and understanding causal estimates using Mendelian randomisation. Diabetes65, 3002–3007 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Fox, J. & Long, J. S. Modern Methods of Data Analysis (Sage Publications, Thousand Oaks, CA, USA, 1990).
Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol.40, 304–314 (2016). ArticlePubMedPubMed Central Google Scholar
Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int. J. Epidemiol. https://doi.org/10.1093/ije/dyx102.
MacArthur, J. et al. The new NHGRI-EBI catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res.45, D896–D901 (2017). ArticlePubMedCAS Google Scholar
Cohen, J. C., Boerwinkle, E., Mosley, T. H. & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med.354, 1264–1272 (2006). ArticlePubMedCAS Google Scholar
Warren, H. R. et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat. Genet.49, 403–415 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Ehret, G. B. et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat. Genet.48, 1171–1184 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Liu, C. et al. Meta-analysis identifies common and rare variants influencing blood pressure and overlapping with metabolic trait loci. Nat. Genet.48, 1162–1170 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Holmes, M. V. et al. Causal effects of body mass index on cardiometabolic traits and events: a Mendelian randomization analysis. Am. J. Hum. Genet.94, 198–208 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Lyngdoh, T. et al. Serum uric acid and adiposity: deciphering causality using a bidirectional Mendelian randomization approach. PLoS One7, e39321 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Hemani, G. et al. Automating Mendelian randomization through machine learning to construct a putative causal map of the human phenome. bioRxivhttps://doi.org/10.1101/173682 (2017).
Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov.12, 581–594 (2013). ArticlePubMedCAS Google Scholar
Mokry, L. E., Ahmad, O., Forgetta, V., Thanassoulis, G. & Richards, J. B. Mendelian randomisation applied to drug development in cardiovascular disease: a review. J. Med. Genet.52, 71–79 (2015). ArticlePubMedCAS Google Scholar
Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol.37, 658–665 (2013). ArticlePubMedPubMed Central Google Scholar
Pasaniuc, B. et al. Fast and accurate imputation of summary statistics enhances evidence of functional enrichment. Bioinformatics30, 2906–2914 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
1000 Genomes Project Consortium. et al. A global reference for human genetic variation. Nature526, 68–74 (2015). ArticleCAS Google Scholar