Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps (original) (raw)

Data availability

Summary-level data are available at the DIAGRAM consortium website http://diagram-consortium.org/ and Accelerating Medicines Partnership T2D portal http://www.type2diabetesgenetics.org/.

References

  1. Scott, R. A. et al. An expanded genome-wide association study of type 2 diabetes in Europeans. Diabetes 66, 2888–2902 (2017).
    Article CAS PubMed PubMed Central Google Scholar
  2. Zhao, W. et al. Identification of new susceptibility loci for type 2 diabetes and shared etiological pathways with coronary heart disease. Nat. Genet. 49, 1450–1457 (2017).
    Article CAS PubMed PubMed Central Google Scholar
  3. Mahajan, A. et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat. Genet. 50, 559–571 (2018).
    Article CAS PubMed PubMed Central Google Scholar
  4. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  5. Jónsson, H. et al. Whole genome characterization of sequence diversity of 15,220 Icelanders. Sci. Data 4, 170115 (2017).
    Article PubMed PubMed Central Google Scholar
  6. Flannick, J. & Florez, J. C. Type 2 diabetes: genetic data sharing to advance complex disease research. Nat. Rev. Genet. 17, 535–549 (2016).
    Article CAS PubMed Google Scholar
  7. Voight, B. F. et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat. Genet. 42, 579–589 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  8. Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981–990 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  9. Kooner, J. S. et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat. Genet. 43, 984–989 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  10. Cho, Y. S. et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat. Genet. 44, 67–72 (2011).
    Article PubMed PubMed Central Google Scholar
  11. Lotta, L. A. et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat. Genet. 49, 17–26 (2017).
    Article CAS PubMed Google Scholar
  12. Magi, R., Lindgren, C. M. & Morris, A. P. Meta-analysis of sex-specific genome-wide association studies. Genet. Epidemiol. 34, 846–853 (2010).
    Article PubMed PubMed Central Google Scholar
  13. Small, K. S. et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat. Genet. 43, 561–564 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  14. Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  15. Maller, J. B. et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  16. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
    Article PubMed Google Scholar
  17. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  18. Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA 97, 1607–1611 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  19. Rubio-Cabezas, O. et al. Permanent neonatal diabetes and enteric anendocrinosis associated with biallelic mutations in NEUROG3. Diabetes 60, 1349–1353 (2011).
    Article CAS PubMed PubMed Central Google Scholar
  20. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  21. GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).
    Article PubMed Central Google Scholar
  22. Uchida, T. et al. Deletion of Cdkn1b ameliorates hyperglycemia by maintaining compensatory hyperinsulinemia in diabetic mice. Nat. Med. 11, 175–182 (2005).
    Article CAS PubMed Google Scholar
  23. Pasquali, L. et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat. Genet. 46, 136–143 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  24. Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc. Natl. Acad. Sci. USA 114, 2301–2306 (2017).
    Article CAS PubMed PubMed Central Google Scholar
  25. Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 diabetes susceptibility loci. eLife 7, e31977 (2018).
    Article PubMed PubMed Central Google Scholar
  26. Gaulton, K. J. et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat. Genet. 47, 1415–1425 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  27. Fogarty, M. P., Cannon, M. E., Vadlamudi, S., Gaulton, K. J. & Mohlke, K. L. Identification of a regulatory variant that binds FOXA1 and FOXA2 at the CDC123/CAMK1D type 2 diabetes GWAS locus. PLoS. Genet. 10, e1004633 (2014).
    Article PubMed PubMed Central Google Scholar
  28. Dimas, A. S. et al. Impact of type 2 diabetes susceptibility variants on quantitative glycemic traits reveals mechanistic heterogeneity. Diabetes 63, 2158–2171 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  29. Wood, A. R. et al. A genome-wide association study of IVGTT-based measures of first-phase insulin secretion refines the underlying physiology of type 2 diabetes variants. Diabetes 66, 2296–2309 (2017).
    Article CAS PubMed PubMed Central Google Scholar
  30. Pickrell, J. K. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am. J. Hum. Genet. 94, 559–573 (2014).
    Article CAS PubMed PubMed Central Google Scholar
  31. Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug. Discov. 12, 581–594 (2013).
    Article CAS PubMed Google Scholar
  32. van der Harst, P. & Verweij, N. Identification of 64 novel genetic loci provides an expanded view on the genetic architecture of coronary artery disease. Circ. Res. 122, 433–443 (2018).
    Article PubMed PubMed Central Google Scholar
  33. van de Bunt, M. et al. Transcript expression data from human islets links regulatory signals from genome-wide association studies for type 2 diabetes and glycemic traits to their downstream effectors. PLoS. Genet. 11, e1005694 (2015).
    Article PubMed PubMed Central Google Scholar
  34. Prokopenko, I. et al. A central role for GRB10 in regulation of islet function in man. PLoS. Genet. 10, e1004235 (2014).
    Article PubMed PubMed Central Google Scholar
  35. Kaburagi, T., Kizuka, Y., Kitazume, S. & Taniguchi, N. The inhibitory role of α2,6-sialylation in adipogenesis. J. Biol. Chem. 292, 2278–2286 (2017).
    Article CAS PubMed Google Scholar
  36. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  37. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  38. Lizio, M. et al. Mapping mammalian cell-type-specific transcriptional regulatory networks using KD-CAGE and ChIP-seq data in the TC-YIK cell line. Front. Genet. 6, 331 (2015).
    Article PubMed PubMed Central Google Scholar
  39. Scott, L. J. et al. The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nat. Commun. 7, 11764 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  40. McCarthy, M. I., Rorsman, P. & Gloyn, A. L. TCF7L2 and diabetes: a tale of two tissues, and of two species. Cell. Metab. 17, 157–159 (2013).
    Article CAS PubMed Google Scholar
  41. Gaulton, K. J. et al. A map of open chromatin in human pancreatic islets. Nat. Genet. 42, 255–259 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  42. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).
    CAS PubMed PubMed Central Google Scholar
  43. Meigs, J. B., Cupples, L. A. & Wilson, P. W. Parental transmission of type 2 diabetes: the Framingham Offspring Study. Diabetes 49, 2201–2207 (2000).
    Article CAS PubMed Google Scholar
  44. Meigs, J. B. et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N. Engl. J. Med. 359, 2208–2219 (2008).
    Article CAS PubMed PubMed Central Google Scholar
  45. Weedon, M. N. et al. Combining information from common type 2 diabetes risk polymorphisms improves disease prediction. PLoS. Med. 3, e374 (2006).
    Article PubMed PubMed Central Google Scholar
  46. Euesden, J., Lewis, C. M. & O’Reilly, P. F. PRSice: Polygenic Risk Score software. Bioinformatics 31, 1466–1468 (2015).
    Article CAS PubMed Google Scholar
  47. Gatineau, M. et al. Adult obesity and type 2 diabetes (Public Health England, London, 2014). https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/338934/Adult_obesity_and_type_2_diabetes_.pdf.
  48. Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).
    Article CAS PubMed Google Scholar
  49. Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348–354 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  50. Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).
    Article CAS PubMed PubMed Central Google Scholar
  51. Cook, J. P., Mahajan, A. & Morris, A. P. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes. Eur. J. Hum. Genet. 25, 240–245 (2017).
    Article PubMed Google Scholar
  52. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).
    Article CAS PubMed Google Scholar
  53. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  54. Ioannidis, J. P., Patsopoulos, N. A. & Evangelou, E. Heterogeneity in meta-analyses of genome-wide association investigations. PLoS One 2, e841 (2007).
    Article PubMed PubMed Central Google Scholar
  55. Pulit, S. L., de With, S. A. & de Bakker, P. I. Resetting the bar: statistical significance in whole-genome sequencing-based association studies of global populations. Genet. Epidemiol. 41, 145–151 (2017).
    Article PubMed Google Scholar
  56. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  57. Wakefield, J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 81, 208–227 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  58. Denny, J. C. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene-disease associations. Bioinformatics 26, 1205–1210 (2010).
    Article CAS PubMed PubMed Central Google Scholar
  59. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
    Article CAS PubMed Google Scholar
  60. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).
    Article CAS PubMed Google Scholar
  61. Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7, 500–507 (2012).
    Article CAS PubMed PubMed Central Google Scholar
  62. Ongen, H., Buil, A., Brown, A. A., Dermitzakis, E. T. & Delaneau, O. Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 32, 1479–1485 (2016).
    Article CAS PubMed Google Scholar
  63. Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet. 99, 1245–1260 (2016).
    Article CAS PubMed PubMed Central Google Scholar
  64. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  65. Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).
    Article CAS PubMed Google Scholar

Download references

Acknowledgements

This work was supported primarily by the NIDDK as part of the Accelerating Medicines Partnership-T2D, funded by U01DK105535 (M.I.M.), U01DK062370 (M.B.), and U01DK078616 (J.M.) grants. Part of this work was conducted using the UK Biobank resource under application number 9161. A full list of acknowledgements appears in the Supplementary Note.

Author information

Author notes

  1. These authors contributed equally: Andrew P. Morris, Michael Boehnke, Mark I. McCarthy.

Authors and Affiliations

  1. Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
    Anubha Mahajan, Matthias Thurner, Neil R. Robertson, Jason M. Torres, N. William Rayner, Anthony J. Payne, Cecilia M. Lindgren, Jonathan Marchini, Anna L. Gloyn, Andrew P. Morris & Mark I. McCarthy
  2. Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
    Anubha Mahajan, Matthias Thurner, Neil R. Robertson, N. William Rayner, Amanda J. Bennett, Vibe Nylander, Anna L. Gloyn & Mark I. McCarthy
  3. Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
    Daniel Taliun, Ellen M. Schmidt, Goncalo R. Abecasis & Michael Boehnke
  4. Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
    N. William Rayner, Bram Peter Prins, Sophie Hackinger & Eleftheria Zeggini
  5. deCODE Genetics, Amgen Inc., Reykjavik, Iceland
    Valgerdur Steinthorsdottir, Gudmar Thorleifsson, Unnur Thorsteinsdottir & Kari Stefansson
  6. MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
    Robert A. Scott, Jian’an Luan, Claudia Langenberg & Nicholas J. Wareham
  7. Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Niels Grarup, Jette Bork-Jensen, Oluf Pedersen & Torben Hansen
  8. Department of Biostatistics, University of Liverpool, Liverpool, UK
    James P. Cook & Andrew P. Morris
  9. Institute of Genetic Epidemiology, Department of Biometry, Epidemiology, and Medical Bioinformatics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
    Matthias Wuttke & Anna Köttgen
  10. Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
    Chloé Sarnowski, Ching-Ti Liu & Josée Dupuis
  11. Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
    Reedik Mägi, Krista Fischer, Kristi Läll, Andres Metspalu & Andrew P. Morris
  12. Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
    Jana Nano, Oscar H. Franco, M. Arfan Ikram, Symen Ligthart & Abbas Dehghan
  13. Research Unit of Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München Research Center for Environmental Health, Neuherberg, Germany
    Christian Gieger, Jennifer Kriebel & Harald Grallert
  14. German Center for Diabetes Research (DZD), Neuherberg, Germany
    Christian Gieger, Christian Herder, Jennifer Kriebel, Annette Peters, Barbara Thorand & Harald Grallert
  15. Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
    Stella Trompet
  16. Department of Cardiology, Leiden University Medical Center, Leiden, the Netherlands
    Stella Trompet & J. Wouter Jukema
  17. CNRS-UMR8199, Lille University, Lille Pasteur Institute, Lille, France
    Cécile Lecoeur, Mickaël Canouil, Loïc Yengo & Philippe Froguel
  18. Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
    Michael H. Preuss, Claudia Schurmann, Erwin P. Bottinger & Ruth J. F. Loos
  19. Department of Pediatrics, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor–UCLA Medical Center, Torrance, CA, USA
    Xiuqing Guo, Kent D. Taylor & Jerome I. Rotter
  20. Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
    Lawrence F. Bielak, Sharon L. R. Kardia & Patricia A. Peyser
  21. Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
    Jennifer E. Below & Lauren E. Petty
  22. Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
    Donald W. Bowden & Maggie C. Y. Ng
  23. Center for Diabetes Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
    Donald W. Bowden & Maggie C. Y. Ng
  24. Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
    Donald W. Bowden & Maggie C. Y. Ng
  25. Department of Epidemiology and Biostatistics, Imperial College London, London, UK
    John Campbell Chambers, Weihua Zhang & Abbas Dehghan
  26. Department of Cardiology, Ealing Hospital, London North West Healthcare NHS Trust, Middlesex, UK
    John Campbell Chambers & Weihua Zhang
  27. Imperial College Healthcare NHS Trust, Imperial College London, London, UK
    John Campbell Chambers
  28. Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
    John Campbell Chambers
  29. MRC–PHE Centre for Environment and Health, Imperial College London, London, UK
    John Campbell Chambers & Abbas Dehghan
  30. Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Chungcheongbuk-do, Republic of Korea
    Young Jin Kim
  31. Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
    Xueling Sim
  32. Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
    Chad M. Brummett
  33. Department of Nephrology and Medical Intensive Care and German Chronic Kidney Disease Study, Charité, Universitätsmedizin Berlin, Berlin, Germany
    Kai-Uwe Ec kardt
  34. Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
    Florian Kronenberg & Sebastian Schönherr
  35. Institute of Mathematics and Statistics, University of Tartu, Tartu, Estonia
    Kristi Läll
  36. McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
    Adam E. Locke
  37. Division of Genomics & Bioinformatics, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
    Adam E. Locke
  38. William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
    Ioanna Ntalla
  39. Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
    Ivan Brandslund
  40. Department of Clinical Biochemistry, Vejle Hospital, Vejle, Denmark
    Ivan Brandslund
  41. Medical Department, Lillebælt Hospital Vejle, Vejle, Denmark
    Cramer Christensen
  42. Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
    George Dedoussis
  43. Department of Medicine, Harvard Medical School, Boston, MA, USA
    Jose C. Florez & James B. Meigs
  44. Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
    Jose C. Florez
  45. Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
    Jose C. Florez
  46. Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA
    Jose C. Florez & James B. Meigs
  47. Robertson Centre for Biostatistics, University of Glasgow, Glasgow, UK
    Ian Ford
  48. Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
    Timothy M. Frayling
  49. Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
    Vilmantas Giedraitis & Martin Ingelsson
  50. University of Exeter Medical School, University of Exeter, Exeter, UK
    Andrew T. Hattersley
  51. Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
    Christian Herder
  52. Steno Diabetes Center Copenhagen, Gentofte, Denmark
    Marit E. Jørgensen
  53. National Institute of Public Health, Southern Denmark University, Copenhagen, Denmark
    Marit E. Jørgensen
  54. Research Centre for Prevention and Health, Capital Region of Denmark, Glostrup, Denmark
    Torben Jørgensen & Allan Linneberg
  55. Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Torben Jørgensen
  56. Faculty of Medicine, Aalborg University, Aalborg, Denmark
    Torben Jørgensen
  57. Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
    Johanna Kuusisto, Alena Stančáková & Markku Laakso
  58. Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
    Cecilia M. Lindgren
  59. Big Data Institute, Li Ka Shing Centre For Health Information and Discovery, University of Oxford, Oxford, UK
    Cecilia M. Lindgren
  60. Center for Clinical Research and Prevention, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
    Allan Linneberg
  61. Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
    Allan Linneberg
  62. Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Malmö, Sweden
    Valeriya Lyssenko & Leif Groop
  63. Department of Clinical Science, KG Jebsen Center for Diabetes Research, University of Bergen, Bergen, Norway
    Valeriya Lyssenko
  64. Dromokaiteio Psychiatric Hospital, National and Kapodistrian University of Athens, Athens, Greece
    Vasiliki Mamakou
  65. Institute of Human Genetics, Technische Universität München, Munich, Germany
    Thomas Meitinger
  66. Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
    Thomas Meitinger
  67. DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance partner site, Munich, Germany
    Thomas Meitinger & Annette Peters
  68. Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
    Karen L. Mohlke
  69. Clinical Research Centre, Centre for Molecular Medicine, Ninewells Hospital and Medical School, Dundee, UK
    Andrew D. Morris
  70. Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
    Andrew D. Morris
  71. Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
    Girish Nadkarni
  72. Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
    James S. Pankow
  73. Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
    Annette Peters & Barbara Thorand
  74. Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
    Naveed Sattar
  75. Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
    Konstantin Strauch
  76. Institute of Medical Informatics, Biometry, and Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany
    Konstantin Strauch
  77. Faculty of Medicine, University of Iceland, Reykjavik, Iceland
    Unnur Thorsteinsdottir & Kari Stefansson
  78. Department of Health, National Institute for Health and Welfare, Helsinki, Finland
    Jaakko Tuomilehto
  79. Dasman Diabetes Institute, Dasman, Kuwait
    Jaakko Tuomilehto
  80. Department of Neuroscience and Preventive Medicine, Danube-University Krems, Krems, Austria
    Jaakko Tuomilehto
  81. Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
    Jaakko Tuomilehto
  82. Department of Public Health, Aarhus University, Aarhus, Denmark
    Daniel R. Witte
  83. Danish Diabetes Academy, Odense, Denmark
    Daniel R. Witte
  84. National Heart, Lung, and Blood Institute Framingham Heart Study, Framingham, MA, USA
    Josée Dupuis
  85. Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
    Ruth J. F. Loos
  86. Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, UK
    Philippe Froguel
  87. Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
    Erik Ingelsson
  88. Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
    Erik Ingelsson
  89. Department of Medical Sciences, Uppsala University, Uppsala, Sweden
    Lars Lind
  90. Finnish Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
    Leif Groop
  91. Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
    Francis S. Collins
  92. Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
    Colin N. A. Palmer
  93. Clinical Cooparation Group Type 2 Diabetes, Helmholtz Zentrum München, Ludwig-Maximilians-Universität, Munich, Germany
    Harald Grallert
  94. Clinical Cooparation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München, Technical University, Munich, Germany
    Harald Grallert
  95. Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
    James B. Meigs
  96. Departments of Medicine, Institute for Translational Genomics and Population Sciences, LABioMed at Harbor–UCLA Medical Center, Torrance, CA, USA
    Jerome I. Rotter
  97. Department of Statistics, University of Oxford, Oxford, UK
    Jonathan Marchini
  98. Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
    Torben Hansen
  99. Oxford NIHR Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, UK
    Anna L. Gloyn & Mark I. McCarthy

Authors

  1. Anubha Mahajan
  2. Daniel Taliun
  3. Matthias Thurner
  4. Neil R. Robertson
  5. Jason M. Torres
  6. N. William Rayner
  7. Anthony J. Payne
  8. Valgerdur Steinthorsdottir
  9. Robert A. Scott
  10. Niels Grarup
  11. James P. Cook
  12. Ellen M. Schmidt
  13. Matthias Wuttke
  14. Chloé Sarnowski
  15. Reedik Mägi
  16. Jana Nano
  17. Christian Gieger
  18. Stella Trompet
  19. Cécile Lecoeur
  20. Michael H. Preuss
  21. Bram Peter Prins
  22. Xiuqing Guo
  23. Lawrence F. Bielak
  24. Jennifer E. Below
  25. Donald W. Bowden
  26. John Campbell Chambers
  27. Young Jin Kim
  28. Maggie C. Y. Ng
  29. Lauren E. Petty
  30. Xueling Sim
  31. Weihua Zhang
  32. Amanda J. Bennett
  33. Jette Bork-Jensen
  34. Chad M. Brummett
  35. Mickaël Canouil
  36. Kai-Uwe Ec kardt
  37. Krista Fischer
  38. Sharon L. R. Kardia
  39. Florian Kronenberg
  40. Kristi Läll
  41. Ching-Ti Liu
  42. Adam E. Locke
  43. Jian’an Luan
  44. Ioanna Ntalla
  45. Vibe Nylander
  46. Sebastian Schönherr
  47. Claudia Schurmann
  48. Loïc Yengo
  49. Erwin P. Bottinger
  50. Ivan Brandslund
  51. Cramer Christensen
  52. George Dedoussis
  53. Jose C. Florez
  54. Ian Ford
  55. Oscar H. Franco
  56. Timothy M. Frayling
  57. Vilmantas Giedraitis
  58. Sophie Hackinger
  59. Andrew T. Hattersley
  60. Christian Herder
  61. M. Arfan Ikram
  62. Martin Ingelsson
  63. Marit E. Jørgensen
  64. Torben Jørgensen
  65. Jennifer Kriebel
  66. Johanna Kuusisto
  67. Symen Ligthart
  68. Cecilia M. Lindgren
  69. Allan Linneberg
  70. Valeriya Lyssenko
  71. Vasiliki Mamakou
  72. Thomas Meitinger
  73. Karen L. Mohlke
  74. Andrew D. Morris
  75. Girish Nadkarni
  76. James S. Pankow
  77. Annette Peters
  78. Naveed Sattar
  79. Alena Stančáková
  80. Konstantin Strauch
  81. Kent D. Taylor
  82. Barbara Thorand
  83. Gudmar Thorleifsson
  84. Unnur Thorsteinsdottir
  85. Jaakko Tuomilehto
  86. Daniel R. Witte
  87. Josée Dupuis
  88. Patricia A. Peyser
  89. Eleftheria Zeggini
  90. Ruth J. F. Loos
  91. Philippe Froguel
  92. Erik Ingelsson
  93. Lars Lind
  94. Leif Groop
  95. Markku Laakso
  96. Francis S. Collins
  97. J. Wouter Jukema
  98. Colin N. A. Palmer
  99. Harald Grallert
  100. Andres Metspalu
  101. Abbas Dehghan
  102. Anna Köttgen
  103. Goncalo R. Abecasis
  104. James B. Meigs
  105. Jerome I. Rotter
  106. Jonathan Marchini
  107. Oluf Pedersen
  108. Torben Hansen
  109. Claudia Langenberg
  110. Nicholas J. Wareham
  111. Kari Stefansson
  112. Anna L. Gloyn
  113. Andrew P. Morris
  114. Michael Boehnke
  115. Mark I. McCarthy

Contributions

Project coordination: A. Mahajan, A.P.M., M.B., and M.I.M. Writing: A. Mahajan, D.T., A.P.M., M.B., and M.I.M. Core analyses: A. Mahajan, D.T., M.T., J.M.T., A.J.P., A.P.M., M.B., and M.I.M. DIAMANTE analysis group: A. Mahajan, J.E.B., D.W.B., J.C.C., Y.J.K., M.C.Y.N., L.E.P., X.S., W.Z., A.P.M., M.B., and M.I.M. Statistical analysis in individual studies: A. Mahajan, D.T., N.R.R., N.W.R., V.S., R.A.S., N.G., J.P.C., E.M.S., M.W., C. Sarnowski, J.N., S.T., C. Lecoeur, M.H.P., B.P.P., X.G., L.F.B., J.B.-J., M.C., K.L., C.-T.L., A.E.L., J’a.L., C. Schurmann, L.Y., G.T., and A.P.M. Genotyping and phenotyping: A. Mahajan, R.A.S., R.M., C.G., S.T., K.-U.E., K.F., S.L.R.K., F.K., I.N., C.M.B., C. Schurmann, E.P.B., I.B., C.C., G.D., I.F., V.G., M.I., M.E.J., S.L., A.L., V.L., V.M., A.D.M., G.N., N.S., A.S., D.R.W., S.S., E.P.B., S.H., C.H., J. Kriebel, T.M., A.P., B.T., A.D., A.K., G.R.A., C. Langenberg, N.J.W., A.P.M., M.B., and M.I.M. Islet annotations: M.T., J.M.T., A.J.B., V.N., A.L.G., and M.I.M. Individual study design and principal investigators: E.P.B., J.C.F., O.H.F., T.M.F., A.T.H., M.A.I., T.J., J. Kuusisto, C.M.L., K.L.M., J.S.P., K. Strauch, K.D.T., U.T., J.T., J.D., P.A.P., E.Z., R.J.F.L., P.F., E.I., L.L., L.G., M.L., F.S.C., J.W.J., C.N.A.P., H.G., A. Metspalu, A.D., A.K., G.R.A., J.B.M., J.I.R., J.M., O.P., T.H., C. Langenberg, N.J.W., K. Stefansson, A.P.M., M.B., and M.I.M.

Corresponding authors

Correspondence toAnubha Mahajan or Mark I. McCarthy.

Ethics declarations

Competing interests

J.C.F. has received consulting honoraria from Merck and from Boehringer-Ingelheim. O.H.F. works at ErasmusAGE, a center for aging research across the course of life, funded by Nestlé Nutrition (Nestec Ltd.), Metagenics Inc., and AXA. E.I. is a scientific advisor for Precision Wellness and Olink Proteomics for work unrelated to the present project. A.D. has received consultancy fees and research support from Metagenics Inc. (outside the scope of the present work). T.M.F. has consulted for Boeringer Ingelheim and Sanofi-Aventis on the genetics of diabetes and has an MRC CASE studentship with GSK. G.R.A. is a consultant for 23andMe, Regeneron, Merck, and Helix. R.A.S. is an employee of and shareholder in GlaxoSmithKline. N.S. is working with Boehringer-Ingelheim on a genetics project but has received no remuneration. M.I.M. has served on advisory panels for NovoNordisk and Pfizer, and has received honoraria from NovoNordisk, Pfizer, Sanofi-Aventis, and Eli Lilly. The companies named above had no role in the design or conduct of this study; collection, management, analysis, and interpretation of the data, or in the preparation, review, or approval of the manuscript. Authors affiliated with deCODE (V.S., G.T., U.T. and K.S.) are employed by deCODE Genetics/Amgen, Inc.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Integrated supplementary information

Supplementary Figure 1 Sex-differentiated analyses.

(a) Manhattan plot (top panel) of genome-wide association results for T2D (without BMI adjustment) from female-specific meta-analysis of up to 30,053 cases and 434,336 controls. The association _p_-value (on -log10 scale) for each SNP (_y_-axis) is plotted against the genomic position (NCBI Build 37; _x_-axis). Association signals that reached genome-wide significance (p < 5×10−8) in sex-combined analysis are shown in purple or yellow, if novel. (b) Manhattan plot (bottom panel) of genome-wide association results for T2D without BMI adjustment from male-specific meta-analysis of up to 41,846 cases and 383,767 controls. (c) Z-score for each of the 403 distinct signals from male-specific analysis (_y_-axis) is plotted against the z-score from the female-specific analysis (_y_-axis). Colour of each point varies with –log10 gender heterogeneity _p_-value and diameter of the circle is proportional to sex-combined -log10 _p_-value.

Supplementary Figure 2 Distributions of the allele frequency, imputation score, and posterior probability of association.

Distribution of the risk allele frequencies for all variants having >1% posterior probability of association in genetic credible set (_x_-axis) plotted against average imputation quality (_y_-axis). Diameter varies with the posterior probability of association assigned to each variant.

Supplementary Figure 3 Islet annotation overlap of the variant with the highest probability in genetic credible sets.

Number of variants with posterior probability of association >1% (_x_-axis) plotted against the highest posterior probability of association (_y_-axis) assigned to a variant in the credible set. Points are colour coded according to (a) islet epigenome states and (b) overlap with transcription factor binding sites.

Supplementary Figure 4 Enrichment of cross-tissue epigenetic states in T2D GWAS data.

fGWAS log2 fold enrichment (based on joint model for each tissue) including 95% confidence intervals (_x_-axis) of all chromatin states (_y_-axis) genome-wide. Analyses are based on the Varshney et al.1 data which combined standard epigenomic annotations for the four principal tissues of interest. These analyses performed separately for each tissue show some enrichment for enhancers and/or promoters in all tissues with strongest and most consistent enrichment observed in islets. The universally enriched “transcript” category refers to coding sequence which is by definition represented by the same sequence in each “tissue-specific” analysis. 1Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc Natl Acad Sci U S A 114, 2301-2306 (2017).

Supplementary Figure 5 Enrichment of islet epigenetic states in T2D GWAS data.

fGWAS log2 fold enrichment including 95% confidence intervals (_x_-axis) of all chromatin states (_y_-axis) genome-wide.

Supplementary Figure 6 Epigenome landscape of the ST6GAL1 locus.

For variants included in 99% credible set (PPA>1%) of each distinct signal at ST6GAL1 locus, following information is shown: genomic position of each variant (colour coded for each distinct signal; variant with highest PPA in bold); whole genome bisulphite methylation data (black), 4 human islet ATAC-seq tracks (green, middle), islet chromatin states (from Thurner et al.1, Pasquali et al.2, and Varshney et al.3); and adipose, liver and skeletal muscle chromatin states from Varshney et al.3. 1 Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci. Elife 7(2018). 2 Pasquali, L. et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat Genet 46, 136-143 (2014). 3 Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc Natl Acad Sci U S A 114, 2301-2306 (2017).

Supplementary Figure 7 Epigenome landscape of the ANK1 locus.

For variants included in 99% credible set (PPA>1%) of each distinct signal at ANK1 locus, following information is shown: genomic position of each variant (colour coded for each distinct signal; variant with highest PPA in bold); whole genome bisulphite methylation data (black), 4 human islet ATAC-seq tracks (green, middle), islet chromatin states (from Thurner et al.1, Pasquali et al.2, and Varshney et al.3); and adipose, liver and skeletal muscle chromatin states from Varshney et al.3. 1 Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci. Elife 7(2018). 2 Pasquali, L. et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat Genet 46, 136-143 (2014).3 Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc Natl Acad Sci U S A 114, 2301-2306 (2017).

Supplementary Figure 8 Epigenome landscape of the TCF7L2 locus.

For variants included in 99% credible set (PPA>1%) of each distinct signal at TCF7L2 locus, following information is shown: genomic position of each variant (colour coded for each distinct signal; variant with highest PPA in bold); whole genome bisulphite methylation data (black), 4 human islet ATAC-seq tracks (green, middle), islet chromatin states (from Thurner et al.1, Pasquali et al.2, and Varshney et al.3); and adipose, liver and skeletal muscle chromatin states from Varshney et al.3. 1 Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 Diabetes susceptibility loci. Elife 7(2018). 2 Pasquali, L. et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants. Nat Genet 46, 136-143 (2014). 3 Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc Natl Acad Sci U S A 114, 2301-2306 (2017).

Supplementary Figure 9 Heritability estimates.

Chip heritability estimates for T2D (on the liability scale) at different empirical estimates of population- and sample-level T2D prevalence.

Supplementary Figure 10 Polygenic risk scores.

Genome-wide polygenic risk score (PRS) identifies individuals with significantly increased risk of T2D. a) PRS in UK Biobank individuals is normally distributed with a shift towards right, observed for T2D cases. PRS is plotted on the _x_-axis, with values scaled to a mean of 0 and standard deviation of 1. b) Individuals were binned into 40 groups based on PRS, with each grouping representing 2.5% of population. c) BMI distribution in T2D cases, within each PRS bin.

Supplementary Figure 11 Genetic correlations between T2D and biomedically relevant traits, estimated by LD-score regression implemented in LDHub.

Genetic correlations (z-score) between T2D (_y_-axis) and range of metabolic and anthropometric traits (_x_-axis) as estimated using LD Score regression. The genetic correlation estimates are colour coded according to phenotypic area. Allelic direction of effect is aligned to increased T2D risk. Size of the circle denotes the significance level for the correlation.

Supplementary Figure 12 Effect of BMI adjustment on genetic correlation estimates between various traits and T2D.

Genetic correlations (z-score) between range of metabolic and anthropometric traits and T2D without BMI adjustment (_x_-axis) and T2D with BMI adjustment (_y_-axis) as estimated using LD Score regression. The genetic correlation estimates are colour coded according to phenotypic area. Allelic direction of effect is aligned to increased T2D risk. Size of the circle denotes the significance level for the correlation.

Supplementary information

Rights and permissions

About this article

Cite this article

Mahajan, A., Taliun, D., Thurner, M. et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps.Nat Genet 50, 1505–1513 (2018). https://doi.org/10.1038/s41588-018-0241-6

Download citation