Reconciling disagreement on global river flood changes in a warming climate (original) (raw)
References
Allan, R. P. & Soden, B. J. Atmospheric warming and the amplification of precipitation extremes. Science321, 1481–1484 (2008). ArticleCAS Google Scholar
Hirabayashi, Y. et al. Global flood risk under climate change. Nat. Clim. Change3, 816–821 (2013). Article Google Scholar
Lenderink, G. & Van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci.1, 511–514 (2008). ArticleCAS Google Scholar
Trenberth, K. E., Dai, A., Rasmussen, R. & Parsons, D. The changing character of precipitation. Bull. Am. Meteorol. Soc.84, 1205–1217 (2003). Article Google Scholar
Fischer, E. M. & Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Change6, 986–991 (2016). Article Google Scholar
Prein, A. F. et al. The future intensification of hourly precipitation extremes. Nat. Clim. Change7, 48–52 (2017). Article Google Scholar
Yin, J. et al. Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat. Commun.9, 4389 (2018). ArticleCAS Google Scholar
Ali, H., Modi, P. & Mishra, V. Increased flood risk in Indian sub-continent under the warming climate. Weather Clim. Extrem.25, 100212 (2019). Article Google Scholar
Mallakpour, I. & Villarini, G. The changing nature of flooding across the central United States. Nat. Clim. Change5, 250–254 (2015). Article Google Scholar
Slater, L. J. & Villarini, G. Recent trends in U.S. flood risk. Geophys. Res. Lett.43, 12428–12436 (2016). Article Google Scholar
Archfield, S. A., Hirsch, R. M., Viglione, A. & Bloschl, G. Fragmented patterns of flood change across the United States. Geophys. Res. Lett.43, 10232–10239 (2016). ArticleCAS Google Scholar
Zhang, X. S. et al. How streamflow has changed across Australia since the 1950s: evidence from the network of hydrologic reference stations. Hydrol. Earth Syst. Sci.20, 3947–3965 (2016). Article Google Scholar
Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature573, 108–111 (2019). Article Google Scholar
Do, H. X., Westra, S. & Leonard, M. A global-scale investigation of trends in annual maximum streamflow. J. Hydrol.552, 28–43 (2017). Article Google Scholar
Mudelsee, M., Borngen, M., Tetzlaff, G. & Grunewald, U. No upward trends in the occurrence of extreme floods in central Europe. Nature425, 166–169 (2003). ArticleCAS Google Scholar
Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2013).
Hirsch, R. M. & Archfield, S. A. Flood trends: not higher but more often. Nat. Clim. Change5, 198–199 (2015). Article Google Scholar
Sharma, A., Wasko, C. & Lettenmaier, D. P. If precipitation extremes are increasing, why aren’t floods? Water Resour. Res.54, 8545–8551 (2018). Article Google Scholar
Wasko, C. Can temperature be used to inform changes to flood extremes with global warming? Phil. Trans. R. Soc. A379, 20190551 (2021). Article Google Scholar
Peterson, T. C. et al. Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge. Bull. Am. Meteorol. Soc.94, 821–834 (2013). Article Google Scholar
Sikorska, A. E., Viviroli, D. & Seibert, J. Flood-type classification in mountainous catchments using crisp and fuzzy decision trees. Water Resour. Res.51, 7959–7976 (2015). Article Google Scholar
Berghuijs, W. R., Woods, R. A., Hutton, C. J. & Sivapalan, M. Dominant flood generating mechanisms across the United States. Geophys. Res. Lett.43, 4382–4390 (2016). Article Google Scholar
Stein, L., Clark, M. P., Knoben, W. J., Pianosi, F. & Woods, R. A. How do climate and catchment attributes influence flood generating processes? A large‐sample study for 671 catchments across the contiguous USA. Water Resour. Res.57, e2020WR028300 (2021). Article Google Scholar
Kemter, M., Merz, B., Marwan, N., Vorogushyn, S. & Blöschl, G. Joint trends in flood magnitudes and spatial extents across Europe. Geophys. Res. Lett.47, e2020GL087464 (2020). Article Google Scholar
Wang, G. et al. The peak structure and future changes of the relationships between extreme precipitation and temperature. Nat. Clim. Change7, 268–274 (2017). Article Google Scholar
Wasko, C., Sharma, A. & Lettenmaier, D. P. Increases in temperature do not translate to increased flooding. Nat. Commun.10, 5676 (2019). ArticleCAS Google Scholar
Kapnick, S. & Hall, A. Causes of recent changes in western North American snowpack. Clim. Dyn.38, 1885–1899 (2012). Article Google Scholar
Wu, X., Che, T., Li, X., Wang, N. & Yang, X. Slower snowmelt in spring along with climate warming across the Northern Hemisphere. Geophys. Res. Lett.45, 12331–12339 (2018). Article Google Scholar
Arnell, N. W. & Gosling, S. N. The impacts of climate change on river flood risk at the global scale. Clim. Change134, 387–401 (2016). Article Google Scholar
Clow, D. W. Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. J. Clim.23, 2293–2306 (2010). Article Google Scholar
De Michele, C. & Salvadori, G. On the derived flood frequency distribution: analytical formulation and the influence of antecedent soil moisture condition. J. Hydrol.262, 245–258 (2002). Article Google Scholar
Bennett, B., Leonard, M., Deng, Y. & Westra, S. An empirical investigation into the effect of antecedent precipitation on flood volume. J. Hydrol.567, 435–445 (2018). Article Google Scholar
Wasko, C. & Nathan, R. Influence of changes in rainfall and soil moisture on trends in flooding. J. Hydrol.575, 432–441 (2019). Article Google Scholar
Musselman, K. N. et al. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Change8, 808–812 (2018). Article Google Scholar
Beck, H. E. et al. Bias correction of global high-resolution precipitation climatologies using streamflow observations from 9372 catchments. J. Clim.33, 1299–1315 (2020). Article Google Scholar
Lehner, B. Derivation of Watershed Boundaries for GRDC Gauging Stations Based on the Hydrosheds Drainage Network Tech. Rep. 41 (Global Runoff Data Centre in the Federal Institute of Hydrology (BfG), Germany, 2012).
Falcone, J. A., Carlisle, D. M., Wolock, D. M. & Meador, M. R. GAGES: a stream gage database for evaluating natural and altered flow conditions in the conterminous United States. Ecology91, 621 (2010). Article Google Scholar
Vogt, J. V., Soille, P., Colombo, R., Paracchini, M. L. & de Jager, A. Digital Terrain Modelling: A Pan-European River and Catchment Database (European Communities, Italy, 2007). Google Scholar
Zhang, Y. et al. Collation of Australian Modeller’s Streamflow Dataset for 780 Unregulated Australian Catchments Water for a Healthy Country Flagship Report (CSIRO, 2013).
Alvarez-Garreton, C. et al. The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset. Hydrol. Earth Syst. Sci.22, 5817–5846 (2018). Article Google Scholar
Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ.9, 494–502 (2011). Article Google Scholar
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science342, 850–853 (2013). ArticleCAS Google Scholar
Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data13, 4349–4383 (2021). Article Google Scholar
Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol.282, 104–115 (2003). Article Google Scholar
Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev.9, 1937–1958 (2016). Article Google Scholar
Jones, P. W. First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Weather Rev.127, 2204–2210 (1999). Article Google Scholar
Lyne, V. & Hollick, M. Stochastic time-variable rainfall-runoff modelling. In Institute of Engineers Australia National Conference (ed. Ratcliffe, J. S.) 89–93 (Barton, Australia: Institute of Engineers, 1979).
Brutsaert, W. & Nieber, J. L. Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour. Res.13, 637–643 (1977). Article Google Scholar
Cheng, L., Zhang, L. & Brutsaert, W. Automated selection of pure base flows from regular daily streamflow data: objective algorithm. J. Hydrol. Eng.21, 06016008 (2016). Article Google Scholar
Tarasova, L., Basso, S., Zink, M. & Merz, R. Exploring controls on rainfall-runoff events: 1. Time series-based event separation and temporal dynamics of event runoff response in Germany. Water Resour. Res.54, 7711–7732 (2018). Article Google Scholar
Tarasova, L. et al. A process‐based framework to characterize and classify runoff events: the event typology of Germany. Water Resour. Res.56, e2019WR026951 (2020). Article Google Scholar
Giani, G., Rico-Ramirez, M. A. & Woods, R. A. A practical, objective, and robust technique to directly estimate catchment response time. Water Resour. Res.57, e2020WR028201 (2021). Article Google Scholar
Tarasova, L. et al. Causative classification of river flood events. Wiley Interdiscip. Rev. Water6, e1353 (2019). Article Google Scholar
Tarasova, L., Basso, S., Poncelet, C. & Merz, R. Exploring controls on rainfall‐runoff events: 2. Regional patterns and spatial controls of event characteristics in Germany. Water Resour. Res.54, 7688–7710 (2018). Article Google Scholar
Turkington, T., Breinl, K., Ettema, J., Alkema, D. & Jetten, V. A new flood type classification method for use in climate change impact studies. Weather Clim. Extrem.14, 1–16 (2016). Article Google Scholar
Duan, Q., Sorooshian, S. & Gupta, V. K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol.158, 265–284 (1994). Article Google Scholar
Caliński, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat.3, 1–27 (1974). Google Scholar
Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc.74, 829–836 (1979). Article Google Scholar
Visser, J. B., Wasko, C., Sharma, A. & Nathan, R. Eliminating the ‘hook’ in precipitation–temperature scaling. J. Clim.34, 9535–9549 (2021). Google Scholar