Reconciling disagreement on global river flood changes in a warming climate (original) (raw)

References

  1. Allan, R. P. & Soden, B. J. Atmospheric warming and the amplification of precipitation extremes. Science 321, 1481–1484 (2008).
    Article CAS Google Scholar
  2. Hirabayashi, Y. et al. Global flood risk under climate change. Nat. Clim. Change 3, 816–821 (2013).
    Article Google Scholar
  3. Lenderink, G. & Van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 1, 511–514 (2008).
    Article CAS Google Scholar
  4. Trenberth, K. E., Dai, A., Rasmussen, R. & Parsons, D. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).
    Article Google Scholar
  5. Fischer, E. M. & Knutti, R. Observed heavy precipitation increase confirms theory and early models. Nat. Clim. Change 6, 986–991 (2016).
    Article Google Scholar
  6. Prein, A. F. et al. The future intensification of hourly precipitation extremes. Nat. Clim. Change 7, 48–52 (2017).
    Article Google Scholar
  7. Yin, J. et al. Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat. Commun. 9, 4389 (2018).
    Article CAS Google Scholar
  8. Ali, H., Modi, P. & Mishra, V. Increased flood risk in Indian sub-continent under the warming climate. Weather Clim. Extrem. 25, 100212 (2019).
    Article Google Scholar
  9. Mallakpour, I. & Villarini, G. The changing nature of flooding across the central United States. Nat. Clim. Change 5, 250–254 (2015).
    Article Google Scholar
  10. Slater, L. J. & Villarini, G. Recent trends in U.S. flood risk. Geophys. Res. Lett. 43, 12428–12436 (2016).
    Article Google Scholar
  11. Archfield, S. A., Hirsch, R. M., Viglione, A. & Bloschl, G. Fragmented patterns of flood change across the United States. Geophys. Res. Lett. 43, 10232–10239 (2016).
    Article CAS Google Scholar
  12. Zhang, X. S. et al. How streamflow has changed across Australia since the 1950s: evidence from the network of hydrologic reference stations. Hydrol. Earth Syst. Sci. 20, 3947–3965 (2016).
    Article Google Scholar
  13. Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).
    Article Google Scholar
  14. Do, H. X., Westra, S. & Leonard, M. A global-scale investigation of trends in annual maximum streamflow. J. Hydrol. 552, 28–43 (2017).
    Article Google Scholar
  15. Mudelsee, M., Borngen, M., Tetzlaff, G. & Grunewald, U. No upward trends in the occurrence of extreme floods in central Europe. Nature 425, 166–169 (2003).
    Article CAS Google Scholar
  16. Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2013).
  17. Hirsch, R. M. & Archfield, S. A. Flood trends: not higher but more often. Nat. Clim. Change 5, 198–199 (2015).
    Article Google Scholar
  18. Sharma, A., Wasko, C. & Lettenmaier, D. P. If precipitation extremes are increasing, why aren’t floods? Water Resour. Res. 54, 8545–8551 (2018).
    Article Google Scholar
  19. Wasko, C. Can temperature be used to inform changes to flood extremes with global warming? Phil. Trans. R. Soc. A 379, 20190551 (2021).
    Article Google Scholar
  20. Peterson, T. C. et al. Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge. Bull. Am. Meteorol. Soc. 94, 821–834 (2013).
    Article Google Scholar
  21. Merz, R. & Bloschl, G. A process typology of regional floods. Water Resour. Res. https://doi.org/10.1029/2002WR001952 (2003).
  22. Sikorska, A. E., Viviroli, D. & Seibert, J. Flood-type classification in mountainous catchments using crisp and fuzzy decision trees. Water Resour. Res. 51, 7959–7976 (2015).
    Article Google Scholar
  23. Berghuijs, W. R., Woods, R. A., Hutton, C. J. & Sivapalan, M. Dominant flood generating mechanisms across the United States. Geophys. Res. Lett. 43, 4382–4390 (2016).
    Article Google Scholar
  24. Stein, L., Clark, M. P., Knoben, W. J., Pianosi, F. & Woods, R. A. How do climate and catchment attributes influence flood generating processes? A large‐sample study for 671 catchments across the contiguous USA. Water Resour. Res. 57, e2020WR028300 (2021).
    Article Google Scholar
  25. Kemter, M., Merz, B., Marwan, N., Vorogushyn, S. & Blöschl, G. Joint trends in flood magnitudes and spatial extents across Europe. Geophys. Res. Lett. 47, e2020GL087464 (2020).
    Article Google Scholar
  26. Wang, G. et al. The peak structure and future changes of the relationships between extreme precipitation and temperature. Nat. Clim. Change 7, 268–274 (2017).
    Article Google Scholar
  27. Wasko, C., Sharma, A. & Lettenmaier, D. P. Increases in temperature do not translate to increased flooding. Nat. Commun. 10, 5676 (2019).
    Article CAS Google Scholar
  28. Kapnick, S. & Hall, A. Causes of recent changes in western North American snowpack. Clim. Dyn. 38, 1885–1899 (2012).
    Article Google Scholar
  29. Wu, X., Che, T., Li, X., Wang, N. & Yang, X. Slower snowmelt in spring along with climate warming across the Northern Hemisphere. Geophys. Res. Lett. 45, 12331–12339 (2018).
    Article Google Scholar
  30. Arnell, N. W. & Gosling, S. N. The impacts of climate change on river flood risk at the global scale. Clim. Change 134, 387–401 (2016).
    Article Google Scholar
  31. Clow, D. W. Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming. J. Clim. 23, 2293–2306 (2010).
    Article Google Scholar
  32. De Michele, C. & Salvadori, G. On the derived flood frequency distribution: analytical formulation and the influence of antecedent soil moisture condition. J. Hydrol. 262, 245–258 (2002).
    Article Google Scholar
  33. Bennett, B., Leonard, M., Deng, Y. & Westra, S. An empirical investigation into the effect of antecedent precipitation on flood volume. J. Hydrol. 567, 435–445 (2018).
    Article Google Scholar
  34. Wasko, C. & Nathan, R. Influence of changes in rainfall and soil moisture on trends in flooding. J. Hydrol. 575, 432–441 (2019).
    Article Google Scholar
  35. Musselman, K. N. et al. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Change 8, 808–812 (2018).
    Article Google Scholar
  36. Beck, H. E. et al. Bias correction of global high-resolution precipitation climatologies using streamflow observations from 9372 catchments. J. Clim. 33, 1299–1315 (2020).
    Article Google Scholar
  37. Lehner, B. Derivation of Watershed Boundaries for GRDC Gauging Stations Based on the Hydrosheds Drainage Network Tech. Rep. 41 (Global Runoff Data Centre in the Federal Institute of Hydrology (BfG), Germany, 2012).
  38. Falcone, J. A., Carlisle, D. M., Wolock, D. M. & Meador, M. R. GAGES: a stream gage database for evaluating natural and altered flow conditions in the conterminous United States. Ecology 91, 621 (2010).
    Article Google Scholar
  39. Vogt, J. V., Soille, P., Colombo, R., Paracchini, M. L. & de Jager, A. Digital Terrain Modelling: A Pan-European River and Catchment Database (European Communities, Italy, 2007).
    Google Scholar
  40. Zhang, Y. et al. Collation of Australian Modeller’s Streamflow Dataset for 780 Unregulated Australian Catchments Water for a Healthy Country Flagship Report (CSIRO, 2013).
  41. Alvarez-Garreton, C. et al. The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies – Chile dataset. Hydrol. Earth Syst. Sci. 22, 5817–5846 (2018).
    Article Google Scholar
  42. Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).
    Article Google Scholar
  43. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
    Article CAS Google Scholar
  44. Muñoz-Sabater, J. et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 13, 4349–4383 (2021).
    Article Google Scholar
  45. Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 282, 104–115 (2003).
    Article Google Scholar
  46. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
    Article Google Scholar
  47. Jones, P. W. First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon. Weather Rev. 127, 2204–2210 (1999).
    Article Google Scholar
  48. Lyne, V. & Hollick, M. Stochastic time-variable rainfall-runoff modelling. In Institute of Engineers Australia National Conference (ed. Ratcliffe, J. S.) 89–93 (Barton, Australia: Institute of Engineers, 1979).
  49. Brutsaert, W. & Nieber, J. L. Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour. Res. 13, 637–643 (1977).
    Article Google Scholar
  50. Cheng, L., Zhang, L. & Brutsaert, W. Automated selection of pure base flows from regular daily streamflow data: objective algorithm. J. Hydrol. Eng. 21, 06016008 (2016).
    Article Google Scholar
  51. Tarasova, L., Basso, S., Zink, M. & Merz, R. Exploring controls on rainfall-runoff events: 1. Time series-based event separation and temporal dynamics of event runoff response in Germany. Water Resour. Res. 54, 7711–7732 (2018).
    Article Google Scholar
  52. Tarasova, L. et al. A process‐based framework to characterize and classify runoff events: the event typology of Germany. Water Resour. Res. 56, e2019WR026951 (2020).
    Article Google Scholar
  53. Giani, G., Rico-Ramirez, M. A. & Woods, R. A. A practical, objective, and robust technique to directly estimate catchment response time. Water Resour. Res. 57, e2020WR028201 (2021).
    Article Google Scholar
  54. Tarasova, L. et al. Causative classification of river flood events. Wiley Interdiscip. Rev. Water 6, e1353 (2019).
    Article Google Scholar
  55. Tarasova, L., Basso, S., Poncelet, C. & Merz, R. Exploring controls on rainfall‐runoff events: 2. Regional patterns and spatial controls of event characteristics in Germany. Water Resour. Res. 54, 7688–7710 (2018).
    Article Google Scholar
  56. Turkington, T., Breinl, K., Ettema, J., Alkema, D. & Jetten, V. A new flood type classification method for use in climate change impact studies. Weather Clim. Extrem. 14, 1–16 (2016).
    Article Google Scholar
  57. Duan, Q., Sorooshian, S. & Gupta, V. K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 158, 265–284 (1994).
    Article Google Scholar
  58. Caliński, T. & Harabasz, J. A dendrite method for cluster analysis. Commun. Stat. 3, 1–27 (1974).
    Google Scholar
  59. Cleveland, W. S. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 74, 829–836 (1979).
    Article Google Scholar
  60. Visser, J. B., Wasko, C., Sharma, A. & Nathan, R. Eliminating the ‘hook’ in precipitation–temperature scaling. J. Clim. 34, 9535–9549 (2021).
    Google Scholar
  61. Zhang, S. Code for "Reconciling disagreement on global river flood changes in a warming climate". Zenodo https://doi.org/10.5281/zenodo.7319421 (2022).

Download references