Fusobacterium nucleatum — symbiont, opportunist and oncobacterium (original) (raw)
Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol.1, 16048 (2016). CASPubMed Google Scholar
Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol.2, 1533–1542 (2017). CASPubMed Google Scholar
Zhao, J.-S., Manno, D. & Hawari, J. Psychrilyobacter atlanticus gen. nov., sp. nov., a marine member of the phylum Fusobacteria that produces H2 and degrades nitramine explosives under low temperature conditions. Int. J. Syst. Evol. Microbiol.59, 491–497 (2009). CASPubMed Google Scholar
Kolenbrander, P. E., Palmer, R. J., Periasamy, S. & Jakubovics, N. S. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol.8, 471–480 (2010). CASPubMed Google Scholar
Lancy, P., Dirienzo, J. M., Appelbaum, B., Rosan, B. & Holt, S. C. Corncob formation between Fusobacterium nucleatum and Streptococcus sanguis. Infect. Immun.40, 303–309 (1983). PubMedPubMed Central Google Scholar
Guo, L., Shokeen, B., He, X., Shi, W. & Lux, R. Streptococcus mutans SpaP binds to RadD of Fusobacterium nucleatum ssp. polymorphum. Mol. Oral Microbiol.32, 355–364 (2017). CASPubMedPubMed Central Google Scholar
Kaplan, C. W., Lux, R., Haake, S. K. & Shi, W. The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol. Microbiol.71, 35–47 (2009). CASPubMed Google Scholar
Wu, T. et al. Cellular components mediating coadherence of Candida albicans and Fusobacterium nucleatum. J. Dent. Res.94, 1432–1438 (2015). CASPubMedPubMed Central Google Scholar
Manson McGuire, A. et al. Evolution of invasion in a diverse set of Fusobacterium species. MBio5, e01864 (2014). This publication is a comparative genomic analysis of sequencedFusobacteriumspecies focused on potential mechanisms of molecular pathogenesis. PubMedPubMed Central Google Scholar
Zanzoni, A., Spinelli, L., Braham, S. & Brun, C. Perturbed human sub-networks by Fusobacterium nucleatum candidate virulence proteins. Microbiome5, 89 (2017). PubMedPubMed Central Google Scholar
Tan, K. H. et al. Porphyromonas gingivalis and Treponema denticola exhibit metabolic symbioses. PLOS Pathog.10, e1003955 (2014). PubMedPubMed Central Google Scholar
Sakanaka, A., Kuboniwa, M., Takeuchi, H., Hashino, E. & Amano, A. Arginine-ornithine antiporter ArcD controls arginine metabolism and interspecies biofilm development of Streptococcus gordonii. J. Biol. Chem.290, 21185–21198 (2015). CASPubMedPubMed Central Google Scholar
Hendrickson, E. L. et al. Proteomics of Fusobacterium nucleatum within a model developing oral microbial community. Microbiologyopen3, 729–751 (2014). CASPubMedPubMed Central Google Scholar
Mark Welch, J. L., Rossetti, B. J., Rieken, C. W., Dewhirst, F. E. & Borisy, G. G. Biogeography of a human oral microbiome at the micron scale. Proc. Natl Acad. Sci. USA113, E791–E800 (2016). This publication is a technical re-exploration of the spatial organization of the microbiota in the oral cavity, revealing new layers of complexity. CASPubMedPubMed Central Google Scholar
Krisanaprakornkit, S. et al. Inducible expression of human beta-defensin 2 by Fusobacterium nucleatum in oral epithelial cells: multiple signaling pathways and role of commensal bacteria in innate immunity and the epithelial barrier. Infect. Immun.68, 2907–2915 (2000). CASPubMedPubMed Central Google Scholar
Ahn, S.-H. et al. Transcriptome profiling analysis of senescent gingival fibroblasts in response to Fusobacterium nucleatum infection. PLOS ONE12, e0188755 (2017). PubMedPubMed Central Google Scholar
Bhattacharyya, S. et al. FAD-I, a Fusobacterium nucleatum cell wall-associated diacylated lipoprotein that mediates human beta defensin 2 induction through Toll-like receptor-1/2 (TLR-1/2) and TLR-2/6. Infect. Immun.84, 1446–1456 (2016). PubMedPubMed Central Google Scholar
Gallimidi, A. B. et al. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget6, 22613–22623 (2015). PubMed Central Google Scholar
Park, S.-R. et al. Diverse Toll-like receptors mediate cytokine production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages. Infect. Immun.82, 1914–1920 (2014). PubMedPubMed Central Google Scholar
Taxman, D. J. et al. Porphyromonas gingivalis mediates inflammasome repression in polymicrobial cultures through a novel mechanism involving reduced endocytosis. J. Biol. Chem.287, 32791–32799 (2012). CASPubMedPubMed Central Google Scholar
Saito, A. et al. Porphyromonas gingivalis entry into gingival epithelial cells modulated by Fusobacterium nucleatum is dependent on lipid rafts. Microb. Pathog.53, 234–242 (2012). CASPubMedPubMed Central Google Scholar
Metzger, Z. et al. Synergistic pathogenicity of Porphyromonas gingivalis and Fusobacterium nucleatum in the mouse subcutaneous chamber model. J. Endod.35, 86–94 (2009). PubMed Google Scholar
Swidsinski, A. et al. Acute appendicitis is characterised by local invasion with Fusobacterium nucleatum/necrophorum. Gut60, 34–40 (2011). PubMed Google Scholar
Han, X. Y. et al. Fusobacterial brain abscess: a review of five cases and an analysis of possible pathogenesis. J. Neurosurg.99, 693–700 (2003). PubMed Google Scholar
Gregory, S. W., Boyce, T. G., Larson, A. N., Patel, R. & Jackson, M. A. Fusobacterium nucleatum osteomyelitis in 3 previously healthy children: a case series and review of the literature. J. Pediatr. Infect. Dis. Soc.4, e155–e159 (2015). Google Scholar
Truant, A. L., Menge, S., Milliorn, K., Lairscey, R. & Kelly, M. T. Fusobacterium nucleatum pericarditis. J. Clin. Microbiol.17, 349–351 (1983). CASPubMedPubMed Central Google Scholar
Altshuler, G. & Hyde, S. Clinicopathologic considerations of fusobacteria chorioamnionitis. Acta Obstet. Gynecol. Scand.67, 513–517 (1988). CASPubMed Google Scholar
Tjalsma, H., Boleij, A., Marchesi, J. R. & Dutilh, B. E. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat. Rev. Microbiol.10, 575–582 (2012). CASPubMed Google Scholar
Strauss, J. et al. Invasive potential of gut mucosa-derived Fusobacterium nucleatum positively correlates with IBD status of the host. Inflamm. Bowel Dis.17, 1971–1978 (2011). PubMed Google Scholar
Ikegami, A., Chung, P. & Han, Y. W. Complementation of the fadA mutation in Fusobacterium nucleatum demonstrates that the surface-exposed adhesin promotes cellular invasion and placental colonization. Infect. Immun.77, 3075–3079 (2009). CASPubMedPubMed Central Google Scholar
Han, Y. W. et al. Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect. Immun.68, 3140–3146 (2000). CASPubMedPubMed Central Google Scholar
Kinder Haake, S. & Lindemann, R. A. Fusobacterium nucleatum T18 aggregates human mononuclear cells and inhibits their PHA-stimulated proliferation. J. Periodontol.68, 39–44 (1997). CASPubMed Google Scholar
Gursoy, U. K., Könönen, E. & Uitto, V.-J. Intracellular replication of fusobacteria requires new actin filament formation of epithelial cells. APMIS116, 1063–1070 (2008). PubMed Google Scholar
Weiss, E. I. et al. Attachment of Fusobacterium nucleatum PK1594 to mammalian cells and its coaggregation with periodontopathogenic bacteria are mediated by the same galactose-binding adhesin. Oral Microbiol. Immunol.15, 371–377 (2000). CASPubMed Google Scholar
Han, Y. W. et al. Fusobacterium nucleatum induces premature and term stillbirths in pregnant mice: implication of oral bacteria in preterm birth. Infect. Immun.72, 2272–2279 (2004). This publication provides evidence in a preclinical model to support the association of fusobacteria with adverse pregnancy outcomes in humans. CASPubMedPubMed Central Google Scholar
Xu, M. et al. FadA from Fusobacterium nucleatum utilizes both secreted and nonsecreted forms for functional oligomerization for attachment and invasion of host cells. J. Biol. Chem.282, 25000–25009 (2007). CASPubMed Google Scholar
Fardini, Y. et al. Fusobacterium nucleatum adhesin FadA binds vascular endothelial cadherin and alters endothelial integrity. Mol. Microbiol.82, 1468–1480 (2011). CASPubMedPubMed Central Google Scholar
Hatakeyama, M. Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe15, 306–316 (2014). CASPubMed Google Scholar
Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res.22, 292–298 (2012). CASPubMedPubMed Central Google Scholar
Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res.22, 299–306 (2012). CASPubMedPubMed Central Google Scholar
Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe15, 382–392 (2014). CASPubMedPubMed Central Google Scholar
Pascal, V. et al. A microbial signature for Crohn’s disease. Gut66, 813–822 (2017). CASPubMed Google Scholar
Gur, C. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity42, 344–355 (2015). CASPubMedPubMed Central Google Scholar
Bullman, S. et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science358, 1443–1448 (2017). CASPubMedPubMed Central Google Scholar
Feng, Q. et al. Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nat. Commun.6, 6528 (2015). CASPubMed Google Scholar
Yu, J. et al. Invasive Fusobacterium nucleatum may play a role in the carcinogenesis of proximal colon cancer through the serrated neoplasia pathway. Int. J. Cancer139, 1318–1326 (2016). CASPubMed Google Scholar
Li, Y.-Y. et al. Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients. World J. Gastroenterol.22, 3227–3233 (2016). CASPubMedPubMed Central Google Scholar
Al-Hebshi, N. N. et al. Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci. Rep.7, 1834 (2017). PubMedPubMed Central Google Scholar
Audirac-Chalifour, A. et al. Cervical microbiome and cytokine profile at various stages of cervical cancer: a pilot study. PLOS ONE11, e0153274 (2016). PubMedPubMed Central Google Scholar
Hsieh, Y.-Y. et al. Increased abundance of Clostridium and Fusobacterium in gastric microbiota of patients with gastric cancer in Taiwan. Sci. Rep.8, 158 (2018). PubMedPubMed Central Google Scholar
Yamamura, K. et al. Human microbiome Fusobacterium nucleatum in esophageal cancer tissue is associated with prognosis. Clin. Cancer Res.22, 5574–5581 (2016). CASPubMed Google Scholar
Warren, R. L. et al. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome1, 16 (2013). PubMedPubMed Central Google Scholar
Dejea, C. M. et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl Acad. Sci. USA111, 18321–18326 (2014). CASPubMedPubMed Central Google Scholar
Guo, S. et al. A simple and novel fecal biomarker for colorectal cancer: ratio of Fusobacterium nucleatum to probiotics populations, based on their antagonistic effect. Clin. Chem.64, 1327–1337 (2018). PubMed Google Scholar
Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut65, 1973–1980 (2015). This molecular epidemiology study highlights the association of tumoural fusobacterial levels with worse prognosis in colorectal cancer. PubMed Google Scholar
Yu, T. et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell170, 548–563 (2017). This work explores the links between fusobacteria, colon cancer and autophagy, suggesting that fusobacteria may confer chemoresistance in colon cancers. CASPubMedPubMed Central Google Scholar
Tahara, T. et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res.74, 1311–1318 (2014). CASPubMedPubMed Central Google Scholar
Ito, M. et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int. J. Cancer137, 1258–1268 (2015). CASPubMed Google Scholar
Mima, K. et al. Fusobacterium nucleatum in colorectal carcinoma tissue according to tumor location. Clin. Transl Gastroenterol.7, e200 (2016). CASPubMedPubMed Central Google Scholar
Mima, K. et al. Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol.1, 653–661 (2015). PubMedPubMed Central Google Scholar
Mehta, R. S. et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol.3, 921–927 (2017). PubMedPubMed Central Google Scholar
Liu, L. et al. Diets that promote colon inflammation associate with risk of colorectal carcinomas that contain Fusobacterium nucleatum. Clin. Gastroenterol. Hepatol.16, 1622–1631 (2018). PubMedPubMed Central Google Scholar
Yang, G. Y. & Shamsuddin, A. M. Gal-GalNAc: a biomarker of colon carcinogenesis. Histol. Histopathol.11, 801–806 (1996). CASPubMed Google Scholar
Coppenhagen-Glazer, S. et al. Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth. Infect. Immun.83, 1104–1113 (2015). CASPubMedPubMed Central Google Scholar
Abed, J. et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe20, 215–225 (2016). CASPubMedPubMed Central Google Scholar
Carroll, G. C. & Sebor, R. J. Dental flossing and its relationship to transient bacteremia. J. Periodontol.51, 691–692 (1980). CASPubMed Google Scholar
Lockhart, P. B. et al. Bacteremia associated with toothbrushing and dental extraction. Circulation117, 3118–3125 (2008). CASPubMedPubMed Central Google Scholar
Su, L. K. et al. Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science256, 668–670 (1992). CASPubMed Google Scholar
Moser, A. R., Pitot, H. C. & Dove, W. F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science247, 322–324 (1990). CASPubMed Google Scholar
Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe14, 207–215 (2013). CASPubMedPubMed Central Google Scholar
Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med.15, 1016–1022 (2009). CASPubMedPubMed Central Google Scholar
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell144, 646–674 (2011). CASPubMed Google Scholar
Nougayrède, J.-P. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science313, 848–851 (2006). PubMed Google Scholar
Sanders, B. E., Umana, A., Lemkul, J. A. & Slade, D. J. FusoPortal: an interactive repository of hybrid MinION-sequenced fusobacterium genomes improves gene identification and characterization. mSphere3, 284 (2018). Google Scholar
Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe14, 195–206 (2013). This publication and reference 74 are seminal papers supporting that fusobacteria potentiate colonic tumorigenesis. CASPubMedPubMed Central Google Scholar
White, B. D., Chien, A. J. & Dawson, D. W. Dysregulation of Wnt/β-catenin signaling in gastrointestinal cancers. Gastroenterology142, 219–232 (2012). CASPubMed Google Scholar
Dougall, W. C., Kurtulus, S., Smyth, M. J. & Anderson, A. C. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Immunol. Rev.276, 112–120 (2017). CASPubMed Google Scholar
Wang, H.-F. et al. Evaluation of antibody level against Fusobacterium nucleatum in the serological diagnosis of colorectal cancer. Sci. Rep.6, 33440 (2016). CASPubMedPubMed Central Google Scholar
Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science359, 592–597 (2018). CASPubMedPubMed Central Google Scholar
Wu, Y. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis in mice via a Toll-like receptor 4/p21-activated kinase 1 cascade. Dig. Dis. Sci.63, 1210–1218 (2018). CASPubMed Google Scholar
Routy, B. et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol.15, 382–396 (2018). CASPubMed Google Scholar
Bennett, J. E., Dolin, R. & Blaser, M. J. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Disease (Elsevier Health Sciences, 2014).
Liu, P.-F., Huang, I.-F., Shu, C.-W. & Huang, C.-M. Halitosis vaccines targeting FomA, a biofilm-bridging protein of fusobacteria nucleatum. Curr. Mol. Med.13, 1358–1367 (2013). CASPubMed Google Scholar
Guo, S.-H. et al. Immunization with alkyl hydroperoxide reductase subunit C reduces Fusobacterium nucleatum load in the intestinal tract. Sci. Rep.7, 10566 (2017). PubMedPubMed Central Google Scholar
Petrof, E. O., Claud, E. C., Gloor, G. B. & Allen-Vercoe, E. Microbial ecosystems therapeutics: a new paradigm in medicine? Benef. Microbes4, 53–65 (2013). CASPubMed Google Scholar
Blaser, M. J. Helicobacter pylori and esophageal disease: wake-up call? Gastroenterology139, 1819–1822 (2010). PubMed Google Scholar
Blaser, M. J. Helicobacter pylori eradication and its implications for the future. Aliment. Pharmacol. Ther.11 (Suppl. 1), 103–107 (1997). PubMed Google Scholar
O’Keefe, S. J. D. et al. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun.6, 6342 (2015). PubMed Google Scholar
Duncan, S. H., Hold, G. L., Harmsen, H. J. M., Stewart, C. S. & Flint, H. J. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol.52, 2141–2146 (2002). CASPubMed Google Scholar
Jalava, J. & Eerola, E. Phylogenetic analysis of Fusobacterium alocis and Fusobacterium sulci based on 16S rRNA gene sequences: proposal of Filifactor alocis (Cato, Moore and Moore) comb. nov. and Eubacterium sulci (Cato, Moore and Moore) comb. nov. Int. J. Syst. Bacteriol.49, 1375–1379 (1999). CASPubMed Google Scholar
Todd, S. M., Settlage, R. E., Lahmers, K. K. & Slade, D. J. Fusobacterium genomics using MinION and illumina sequencing enables genome completion and correction. mSphere3, 284 (2018). Google Scholar
Gupta, R. S. & Sethi, M. Phylogeny and molecular signatures for the phylum Fusobacteria and its distinct subclades. Anaerobe28, 182–198 (2014). CASPubMed Google Scholar
Nie, S. et al. Fusobacterium nucleatum subspecies identification by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol.53, 1399–1402 (2015). CASPubMedPubMed Central Google Scholar
Kook, J.-K. et al. Genome-based reclassification of Fusobacterium nucleatum subspecies at the species level. Curr. Microbiol.74, 1137–1147 (2017). CASPubMed Google Scholar
Repass, J., Maherali, N. & Owen, K. Reproducibility project: cancer biology. Registered report: Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. eLife5, 427 (2016). Google Scholar
Repass, J. et al. Replication study: Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. eLife7, e64900 (2018). Google Scholar
Errington, T. M. et al. An open investigation of the reproducibility of cancer biology research. eLife3, 5773 (2014). Google Scholar
Boleij, A. et al. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis.60, 208–215 (2015). CASPubMed Google Scholar
Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science338, 120–123 (2012). CASPubMedPubMed Central Google Scholar
Kinder-Haake, S., Yoder, S. & Hunt Gerardo, S. Efficient gene transfer and targeted mutagenesis in Fusobacterium nucleatum. Plasmid55, 27–38 (2006). This foundational paper establishes techniques for genetic manipulation of fusobacteria. CASPubMed Google Scholar
Nakagaki, H. et al. Fusobacterium nucleatum envelope protein FomA is immunogenic and binds to the salivary statherin-derived peptide. Infect. Immun.78, 1185–1192 (2010). CASPubMed Google Scholar
Han, Y. W. et al. Identification and characterization of a novel adhesin unique to oral fusobacteria. J. Bacteriol.187, 5330–5340 (2005). CASPubMedPubMed Central Google Scholar
Casasanta, M. A. et al. A chemical and biological toolbox for Type Vd secretion: characterization of the phospholipase A1 autotransporter FplA from Fusobacterium nucleatum. J. Biol. Chem.292, 20240–20254 (2017). CASPubMedPubMed Central Google Scholar
Ma, L., Ding, Q., Feng, X. & Li, F. The protective effect of recombinant FomA-expressing Lactobacillus acidophilus against periodontal infection. Inflammation36, 1160–1170 (2013). CASPubMed Google Scholar
Wu, C. et al. Forward genetic dissection of biofilm development by Fusobacterium nucleatum: novel functions of cell division proteins FtsX and EnvC. MBio9, 101 (2018). This recent publication expands the fusobacterial genetic toolkit. Google Scholar
Han, Y. W., Ikegami, A., Chung, P., Zhang, L. & Deng, C. X. Sonoporation is an efficient tool for intracellular fluorescent dextran delivery and one-step double-crossover mutant construction in Fusobacterium nucleatum. Appl. Environ. Microbiol.73, 3677–3683 (2007). CASPubMedPubMed Central Google Scholar
Yang, Y. et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating Toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of MicroRNA-21. Gastroenterology152, 851–866 (2017). CASPubMed Google Scholar
Kolenbrander, P. E., Andersen, R. N. & Moore, L. V. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect. Immun.57, 3194–3203 (1989). CASPubMedPubMed Central Google Scholar
Tomkovich, S. et al. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res.77, 2620–2632 (2017). CASPubMedPubMed Central Google Scholar
Kokes, M. et al. Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia. Cell Host Microbe17, 716–725 (2015). CASPubMedPubMed Central Google Scholar
Zarkavelis, G. et al. Current and future biomarkers in colorectal cancer. Ann. Gastroenterol.30, 613–621 (2017). PubMedPubMed Central Google Scholar
Imperiale, T. F., Ransohoff, D. F. & Itzkowitz, S. H. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med.371, 187–188 (2014). CASPubMed Google Scholar
Nakatsu, G. et al. Gut mucosal microbiome across stages of colorectal carcinogenesis. Nat. Commun.6, 8727 (2015). CASPubMed Google Scholar
Peng, B.-J. et al. Diagnostic performance of intestinal Fusobacterium nucleatum in colorectal cancer: a meta-analysis. Chin. Med. J.131, 1349–1356 (2018). PubMedPubMed Central Google Scholar
Sze, M. A. & Schloss, P. D. Leveraging existing 16S rRNA gene surveys to identify reproducible biomarkers in individuals with colorectal tumors. MBio9, 7 (2018). Google Scholar
Kaplan, A. et al. Characterization of aid1, a novel gene involved in Fusobacterium nucleatum interspecies interactions. Microb. Ecol.68, 379–387 (2014). CASPubMedPubMed Central Google Scholar
Lima, B. P., Shi, W. & Lux, R. Identification and characterization of a novel Fusobacterium nucleatum adhesin involved in physical interaction and biofilm formation with Streptococcus gordonii. Microbiologyopen6, e00444 (2017). PubMed Central Google Scholar
Park, J., Shokeen, B., Haake, S. K. & Lux, R. Characterization of Fusobacterium nucleatum ATCC 23726 adhesins involved in strain-specific attachment to Porphyromonas gingivalis. Int. J. Oral Sci.8, 138–144 (2016). PubMed Central Google Scholar
Kinder, S. A. & Holt, S. C. Localization of the Fusobacterium nucleatum T18 adhesin activity mediating coaggregation with Porphyromonas gingivalis T22. J. Bacteriol.175, 840–850 (1993). CASPubMedPubMed Central Google Scholar
Liu, P.-F. et al. Vaccination targeting surface FomA of Fusobacterium nucleatum against bacterial co-aggregation: implication for treatment of periodontal infection and halitosis. Vaccine28, 3496–3505 (2010). CASPubMedPubMed Central Google Scholar
Bolstad, A. I., Jensen, H. B. & Bakken, V. Taxonomy, biology, and periodontal aspects of Fusobacterium nucleatum. Clin. Microbiol. Rev.9, 55–71 (1996). CASPubMedPubMed Central Google Scholar
Riordan, T. Human infection with Fusobacterium necrophorum (Necrobacillosis), with a focus on Lemierre’s syndrome. Clin. Microbiol. Rev.20, 622–659 (2007). CASPubMedPubMed Central Google Scholar