Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes (original) (raw)
Basso, K. & Dalla-Favera, R. Germinal centres and B cell lymphomagenesis. Nat. Rev. Immunol.15, 172–184 (2015). CASPubMed Google Scholar
Monti, S. et al. Integrative analysis reveals an outcome-associated and targetable pattern of p53 and cell cycle deregulation in diffuse large B cell lymphoma. Cancer Cell22, 359–372 (2012). CASPubMedPubMed Central Google Scholar
Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet.43, 830–837 (2011). CASPubMedPubMed Central Google Scholar
Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature476, 298–303 (2011). CASPubMedPubMed Central Google Scholar
Lohr, J. G. et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl. Acad. Sci. USA109, 3879–3884 (2012). CASPubMedPubMed Central Google Scholar
Morin, R. D. et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood122, 1256–1265 (2013). CASPubMedPubMed Central Google Scholar
de Miranda, N. F. et al. Exome sequencing reveals novel mutation targets in diffuse large B-cell lymphomas derived from Chinese patients. Blood124, 2544–2553 (2014). PubMedPubMed Central Google Scholar
Rosenwald, A. et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med.346, 1937–1947 (2002). PubMed Google Scholar
Monti, S. et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood105, 1851–1861 (2005). CASPubMed Google Scholar
Ngo, V. N. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature470, 115–119 (2011). CASPubMed Google Scholar
Caro, P. et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell22, 547–560 (2012). CASPubMedPubMed Central Google Scholar
Davis, R. E. et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature463, 88–92 (2010). CASPubMedPubMed Central Google Scholar
Chen, L. et al. SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas. Cancer Cell23, 826–838 (2013). CASPubMedPubMed Central Google Scholar
Lenz, G. et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science319, 1676–1679 (2008). CASPubMed Google Scholar
Muppidi, J. R. et al. Loss of signalling via Gα13 in germinal centre B-cell-derived lymphoma. Nature516, 254–258 (2014). CASPubMedPubMed Central Google Scholar
Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet.42, 181–185 (2010). CASPubMedPubMed Central Google Scholar
Pfeifer, M. et al. PTEN loss defines a PI3K/AKT pathway–dependent germinal center subtype of diffuse large B-cell lymphoma. Proc. Natl. Acad. Sci. USA110, 12420–12425 (2013). CASPubMedPubMed Central Google Scholar
Dubois, S. et al. Biological and clinical relevance of associated genomic alterations in MYD88 L265P and non-L265P-mutated diffuse large B-cell lymphoma: analysis of 361 cases. Clin. Cancer Res.23, 2232–2244 (2017). CASPubMed Google Scholar
Ennishi, D. et al. Genetic profiling of MYC and BCL2 in diffuse large B-cell lymphoma determines cell-of-origin-specific clinical impact. Blood129, 2760–2770 (2017). CASPubMed Google Scholar
Pfreundschuh, M. et al. Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol.9, 105–116 (2008). CASPubMed Google Scholar
Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature499, 214–218 (2013). CASPubMedPubMed Central Google Scholar
Kamburov, A. et al. Comprehensive assessment of cancer missense mutation clustering in protein structures. Proc. Natl. Acad. Sci. USA112, E5486–E5495 (2015). CASPubMedPubMed Central Google Scholar
Kasar, S. et al. Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. Nat. Commun.6, 8866 (2015). CASPubMed Google Scholar
Pasqualucci, L. et al. AID is required for germinal center-derived lymphomagenesis. Nat. Genet.40, 108–112 (2008). CASPubMed Google Scholar
Chapuy, B. et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood127, 869–881 (2016). CASPubMedPubMed Central Google Scholar
Georgiou, K. et al. Genetic basis of PD-L1 overexpression in diffuse large B-cell lymphomas. Blood127, 3026–3034 (2016). CASPubMed Google Scholar
Scott, D. W. et al. TBL1XR1/TP63: a novel recurrent gene fusion in B-cell non-Hodgkin lymphoma. Blood119, 4949–4952 (2012). CASPubMedPubMed Central Google Scholar
Challa-Malladi, M. et al. Combined genetic inactivation of β2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell20, 728–740 (2011). CASPubMedPubMed Central Google Scholar
Green, M. R. et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood116, 3268–3277 (2010). CASPubMedPubMed Central Google Scholar
Steidl, C. et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature471, 377–381 (2011). CASPubMedPubMed Central Google Scholar
Brunet, J. P., Tamayo, P., Golub, T. R. & Mesirov, J. P. Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. USA101, 4164–4169 (2004). CASPubMedPubMed Central Google Scholar
Dierlamm, J. et al. Gain of chromosome region 18q21 including the MALT1 gene is associated with the activated B-cell-like gene expression subtype and increased BCL2 gene dosage and protein expression in diffuse large B-cell lymphoma. Haematologica93, 688–696 (2008). CASPubMed Google Scholar
Lenz, G. et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc. Natl. Acad. Sci. USA105, 13520–13525 (2008). CASPubMedPubMed Central Google Scholar
Pham-Ledard, A. et al. High frequency and clinical prognostic value of MYD88 L265P mutation in primary cutaneous diffuse large B-cell lymphoma, leg-type. JAMA Dermatol.150, 1173–1179 (2014). PubMed Google Scholar
Rovira, J. et al. MYD88 L265P mutations, but no other variants, identify a subpopulation of DLBCL patients of activated B-cell origin, extranodal involvement, and poor outcome. Clin. Cancer Res.22, 2755–2764 (2016). CASPubMed Google Scholar
Rossi, D. et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J. Exp. Med.209, 1537–1551 (2012). CASPubMedPubMed Central Google Scholar
Zhang, Q. et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22; q32). Nat. Genet.22, 63–68 (1999). CASPubMed Google Scholar
Kiel, M. J. et al. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J. Exp. Med.209, 1553–1565 (2012). CASPubMedPubMed Central Google Scholar
Flossbach, L. et al. BCL6 gene rearrangement and protein expression are associated with large cell presentation of extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue. Int. J. Cancer129, 70–77 (2011). CASPubMed Google Scholar
Zucca, E., Bertoni, F., Vannata, B. & Cavalli, F. Emerging role of infectious etiologies in the pathogenesis of marginal zone B-cell lymphomas. Clin. Cancer Res.20, 5207–5216 (2014). CASPubMed Google Scholar
MacLennan, I. C. et al. Extrafollicular antibody responses. Immunol. Rev.194, 8–18 (2003). CASPubMed Google Scholar
Erdmann, T. et al. Sensitivity to PI3K and AKT inhibitors is mediated by divergent molecular mechanisms in subtypes of DLBCL. Blood130, 310–322 (2017). CASPubMed Google Scholar
Sun, Z. et al. PTEN C-terminal deletion causes genomic instability and tumor development. Cell Reports6, 844–854 (2014). CASPubMed Google Scholar
Ortega-Molina, A. et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat. Med.21, 1199–1208 (2015). CASPubMedPubMed Central Google Scholar
Boice, M. et al. Loss of the HVEM tumor suppressor in lymphoma and restoration by modified CAR-T cells. Cell167, 405–418.e413 (2016). CASPubMedPubMed Central Google Scholar
Ying, C. Y. et al. MEF2B mutations lead to deregulated expression of the oncogene BCL6 in diffuse large B cell lymphoma. Nat. Immunol.14, 1084–1092 (2013). CASPubMedPubMed Central Google Scholar
Zhang, J. et al. The CREBBP acetyltransferase is a haploinsufficient tumor suppressor in B-cell lymphoma. Cancer Discov.7, 322–337 (2017). PubMedPubMed Central Google Scholar
Krysiak, K. et al. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma. Blood129, 473–483 (2017). CASPubMedPubMed Central Google Scholar
Béguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell23, 677–692 (2013). PubMedPubMed Central Google Scholar
Li, H. et al. Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma. Blood123, 1487–1498 (2014). CASPubMedPubMed Central Google Scholar
Okosun, J. et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat. Genet.46, 176–181 (2014). CASPubMed Google Scholar
Yang, S. M., Kim, B. J., Norwood Toro, L. & Skoultchi, A. I. H1 linker histone promotes epigenetic silencing by regulating both DNA methylation and histone H3 methylation. Proc. Natl. Acad. Sci. USA110, 1708–1713 (2013). CASPubMedPubMed Central Google Scholar
Xu-Monette, Z. Y. et al. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood120, 3986–3996 (2012). CASPubMedPubMed Central Google Scholar
Sesques, P. & Johnson, N. A. Approach to the diagnosis and treatment of high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements. Blood129, 280–288 (2017). CASPubMed Google Scholar
Li, Y., Choi, P. S., Casey, S. C., Dill, D. L. & Felsher, D. W. MYC through miR-17-92 suppresses specific target genes to maintain survival, autonomous proliferation, and a neoplastic state. Cancer Cell26, 262–272 (2014). CASPubMedPubMed Central Google Scholar
Landau, D. A. et al. Mutations driving CLL and their evolution in progression and relapse. Nature526, 525–530 (2015). CASPubMedPubMed Central Google Scholar
Novak, A. J. et al. Whole-exome analysis reveals novel somatic genomic alterations associated with outcome in immunochemotherapy-treated diffuse large B-cell lymphoma. Blood Cancer J.5, e346 (2015). CASPubMedPubMed Central Google Scholar
Fisher, S. et al. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol.12, R1 (2011). PubMedPubMed Central Google Scholar
Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol.27, 182–189 (2009). CASPubMedPubMed Central Google Scholar
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.20, 1297–1303 (2010). CASPubMedPubMed Central Google Scholar
Lichtenstein, L., Wood, B., MacBeth, A., Birsoy, O. & Lennon, N. ReCapSeg: Validation of somatic copy number alterations for CLIA whole exome sequencing. Cancer Res. 76 Supplement, abstr. 3641 (2016).
Giannikou, K. et al. Whole exome sequencing identifies TSC1/TSC2 biallelic loss as the primary and sufficient driver event for renal angiomyolipoma development. PLoS Genet.12, e1006242 (2016). PubMedPubMed Central Google Scholar
Burger, J. A. et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat. Commun.7, 11589 (2016). CASPubMedPubMed Central Google Scholar
Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol.12, R41 (2011). PubMedPubMed Central Google Scholar
Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol.31, 213–219 (2013). CASPubMedPubMed Central Google Scholar
Costello, M. et al. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic Acids Res.41, e67 (2013). CASPubMedPubMed Central Google Scholar
Giannakis, M. et al. Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma. Cell Reports17, 1206 (2016). CASPubMed Google Scholar
Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell159, 676–690 (2014). Google Scholar
DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet.43, 491–498 (2011). CASPubMedPubMed Central Google Scholar
Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol.30, 413–421 (2012). CASPubMedPubMed Central Google Scholar
Abo, R. P. et al. BreaKmer: detection of structural variation in targeted massively parallel sequencing data using kmers. Nucleic Acids Res.43, e19 (2015). PubMed Google Scholar
Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol.15, R84 (2014). PubMedPubMed Central Google Scholar
Wala, J. A. et al. SvABA: genome-wide detection of structural variants and indels by local assembly. Genome Res. 28, 581–591 (2018). ArticlePubMedPubMed Central Google Scholar