Immune determinants of COVID-19 disease presentation and severity (original) (raw)
van Doremalen, N. et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med.382, 1564–1567 (2020). ArticlePubMed Google Scholar
Wölfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. Nature581, 465–469 (2020). ArticlePubMedCAS Google Scholar
Moghadas, S. M. et al. The implications of silent transmission for the control of COVID-19 outbreaks. Proc. Natl Acad. Sci. USA117, 17513–17515 (2020). ArticleCASPubMedPubMed Central Google Scholar
Smith, J. C. et al. Cigarette smoke exposure and inflammatory signaling increase the expression of the SARS-CoV-2 receptor ACE2 in the respiratory tract. Dev. Cell53, 514–529(2020). ArticleCASPubMedPubMed Central Google Scholar
Mathew, D. et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with implications for therapeutic interventions. Science369, eabc8511 (2020). ArticleCASPubMedPubMed Central Google Scholar
Lucas, C. et al. Longitudinal immunological analyses reveal inflammatory misfiring in severe COVID-19 patients. Nature584, 463–469 (2020). ArticleCASPubMedPubMed Central Google Scholar
Rodriguez, L. et al. Systems-level immunomonitoring from acute to recovery phase of severe COVID-19. Cell Rep. Med.1, 100078 (2020). ArticlePubMedPubMed Central Google Scholar
Ludvigsson, J. F. Case report and systematic review suggest that children may experience similar long‐term effects to adults after clinical COVID‐19. Acta Paediatr.https://doi.org/10.1111/apa.15673 (2020).
Davido, B., Seang, S., Tubiana, R. & de Truchis, P. Post-COVID-19 chronic symptoms: a post-infectious entity? Clin. Microbiol. Infec.26, 1448–1449 (2020). ArticleCAS Google Scholar
Guillot, X., Ribera, A. & Gasque, P. Chikungunya-induced arthritis in Reunion Island: a long-term observational follow-up study showing frequently persistent joint symptoms, some cases of persistent chikungunya immunoglobulin M positivity, and no anticyclic citrullinated peptide seroconversion after 13 years. J. Infect. Dis.222, 1740–1744 (2020). ArticlePubMed Google Scholar
Clark, D. V. et al. Long-term sequelae after Ebola virus disease in Bundibugyo, Uganda: a retrospective cohort study. Lancet Infect. Dis.15, 905–912 (2015). ArticlePubMed Google Scholar
Hickie, I. et al. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ333, 575 (2006). ArticlePubMedPubMed Central Google Scholar
Rodriguez, L. S. T. et al. Achieving symptom relief in patients with Myalgic encephalomyelitis by targeting the neuro-immune interface and inducing disease tolerance. Preprint at bioRxivhttps://doi.org/10.1101/2020.02.20.958249 (2020).
Whittaker, E. et al. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA324, 259–269 (2020). ArticleCASPubMedPubMed Central Google Scholar
Belot, A. et al. SARS-CoV-2-related paediatric inflammatory multisystem syndrome, an epidemiological study, France, 1 March to 17 May 2020. Euro. Surveill.25, 2001010 (2020). ArticlePubMed Central Google Scholar
Toubiana, J. et al. Kawasaki-like multisystem inflammatory syndrome in children during the COVID-19 pandemic in Paris, France: prospective observational study. BMJ369, m2094 (2020). ArticlePubMedPubMed Central Google Scholar
Morris, S. B. et al. Case series of multisystem inflammatory syndrome in adults associated with SARS-CoV-2 infection—United Kingdom and United States, March–August 2020. Morbidity Mortal. Wkly Rep.69, 1450–1456 (2020). ArticleCAS Google Scholar
Corwin, D. J. et al. Distinguishing multisystem inflammatory syndrome in children from Kawasaki disease and benign inflammatory illnesses in the SARS-CoV-2 pandemic. Pediatr. Emerg. Care36, 554–558 (2020). ArticlePubMedPubMed Central Google Scholar
Diorio, C. et al. Multisystem inflammatory syndrome in children and COVID-19 are distinct presentations of SARS-CoV-2. J. Clin. Invest.130, 5967–5975 (2020). ArticleCASPubMedPubMed Central Google Scholar
Consiglio, C. R. & Brodin, P. Stressful beginnings with long-term consequences. Cell180, 820–821 (2020). ArticleCASPubMed Google Scholar
Gruber, C. et al. Mapping systemic inflammation and antibody responses in multisystem inflammatory syndrome in children (MIS-C). Cell183, 982–995 (2020). ArticleCASPubMedPubMed Central Google Scholar
Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell181, 271–280 (2020). ArticleCASPubMedPubMed Central Google Scholar
Qi, F., Qian, S., Zhang, S. & Zhang, Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem. Bioph. Res. Co.526, 135–140 (2020). ArticleCAS Google Scholar
Hamming, I. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol.203, 631–637 (2004). ArticleCASPubMedPubMed Central Google Scholar
Xu, Y. et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nat. Med.26, 502–505 (2020). ArticleCASPubMed Google Scholar
Uhlen, M. et al. A genome-wide transcriptomic analysis of protein-coding genes in human blood cells. Science366, eaax9198 (2019). ArticleCASPubMed Google Scholar
Fitzgerald, K. A. & Kagan, J. C. Toll-like receptors and the control of immunity. Cell180, 1044–1066 (2020). ArticleCASPubMed Google Scholar
Nieto-Torres, J. L. et al. Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome. Virology485, 330–339 (2015). ArticleCASPubMed Google Scholar
Rodrigues, T.S. et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med.218, e20201707 (2021). ArticleCASPubMed Google Scholar
Middeldorp, S. et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J. Thromb. Haemost.18, 1995–2002 (2020). ArticleCASPubMedPubMed Central Google Scholar
Greenhalgh, T., Knight, M., A’Court, C., Buxton, M. & Husain, L. Management of post-acute COVID-19 in primary care. BMJ370, m3026 (2020). ArticlePubMed Google Scholar
Züst, R. et al. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol.12, 137–143 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Spiegel, M. et al. Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J. Virol.79, 2079–2086 (2005). ArticleCASPubMedPubMed Central Google Scholar
Miorin, L. et al. SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc. Natl. Acad Sci. USA117, 28344–28354 (2020). ArticleCASPubMedPubMed Central Google Scholar
Arunachalam, P. S. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science369, 1210–1220 (2020). ArticleCASPubMedPubMed Central Google Scholar
Casanova, J.-L., Su, H. C. & COVID Human Genetic Effort. A global effort to define the human genetics of protective immunity to SARS-CoV-2 infection. Cell181, 1194–199 (2020).
Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell181, 1489–1501 (2020). ArticleCASPubMedPubMed Central Google Scholar
Su, L. F., Kidd, B. A., Han, A., Kotzin, J. J. & Davis, M. M. Virus-specific CD4+ memory-phenotype T cells are abundant in unexposed adults. Immunity38, 373–83 (2013). ArticleCASPubMedPubMed Central Google Scholar
Bert, N. L. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature584, 457–462 (2020). ArticlePubMedCAS Google Scholar
Lipsitch, M., Grad, Y. H., Sette, A. & Crotty, S. Cross-reactive memory T cells and herd immunity to SARS-CoV-2. Nat. Rev. Immunol.20, 709–713 (2020). ArticleCASPubMed Google Scholar
Ng, K. W. et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science370, eabe1107 (2020). ArticleCAS Google Scholar
Anderson, E. M. et al. Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Preprint at medRxivhttps://doi.org/10.1101/2020.11.06.20227215 (2020).
Tso, F. Y. et al. High prevalence of pre-existing serological cross-reactivity against SARS-CoV-2 in sub-Sahara Africa. Int. J. Infect. Dis.102, 577–583 (2020). ArticlePubMedPubMed CentralCAS Google Scholar
Rostad, C. A. et al. Quantitative SARS-CoV-2 serology in children with multisystem inflammatory syndrome (MIS-C). Pediatrics146, e2020018242 (2020). ArticlePubMed Google Scholar
Weisberg, S. P. et al. Distinct antibody responses to SARS-CoV-2 in children and adults across the COVID-19 clinical spectrum. Nat. Immunol.https://doi.org/10.1038/s41590-020-00826-9 (2020).
Pierce, C. A. et al. Immune responses to SARS-CoV-2 infection in hospitalized pediatric and adult patients. Sci. Transl. Med.564, eabd5487 (2020). ArticleCAS Google Scholar
Berghöfer, B. et al. TLR7 ligands induce higher IFN-α production in females. J. Immunol.177, 2088–2096 (2006). ArticlePubMed Google Scholar
Klein, S. L., Marriott, I. & Fish, E. N. Sex-based differences in immune function and responses to vaccination. Trans. R. Soc. Trop. Med. H.109, 9–15 (2015). ArticleCAS Google Scholar
Webb, K. et al. Sex and pubertal differences in the type 1 interferon pathway associate with both X chromosome number and serum sex hormone concentration. Front Immunol.9, 3167 (2019). ArticlePubMedPubMed CentralCAS Google Scholar
Kollmann, T. R., Levy, O., Montgomery, R. R. & Goriely, S. Innate immune function by Toll-like receptors: distinct responses in newborns and the elderly. Immunity37, 771–783 (2012). ArticleCASPubMedPubMed Central Google Scholar
Mertz, D. et al. Pregnancy as a risk factor for severe outcomes from influenza virus infection: a systematic review and meta-analysis of observational studies. Vaccine35, 521–528 (2017). ArticlePubMedPubMed Central Google Scholar
Pido-Lopez, J., Imami, N. & Aspinall, R. Both age and gender affect thymic output: more recent thymic migrants in females than males as they age. Clin. Exp. Immunol.125, 409–413 (2001). ArticleCASPubMedPubMed Central Google Scholar
Lagunas-Rangel, F. A. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. J. Med. Virol.92, 1733–1734 (2020). ArticleCASPubMed Google Scholar
Yilmaz, H. et al. Usefulness of the neutrophil-to-lymphocyte ratio to prediction of type 2 diabetes mellitus in morbid obesity. Diabetes Metab. Syndr. Clin. Res. Rev.9, 299–304 (2015). ArticleCAS Google Scholar
Molony, R. D. et al. Aging impairs both primary and secondary RIG-I signaling for interferon induction in human monocytes. Sci. Signal.10, eaan2392 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
McGonagle, D., Sharif, K., O’Regan, A. & Bridgewood, C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun. Rev.19, 102537 (2020). ArticleCASPubMedPubMed Central Google Scholar
Kang, R. et al. HMGB1 in health and disease. Mol. Asp. Med.40, 1–116 (2014). ArticleCAS Google Scholar
Gao, Y., Chen, Y., Liu, M., Shi, S. & Tian, J. Impacts of immunosuppression and immunodeficiency on COVID-19: a systematic review and meta-analysis. J. Infection.81, 93–95 (2020). ArticleCAS Google Scholar
Fung, M. & Babik, J. M. COVID-19 in immunocompromised hosts: what we know so far. Clin. Infect. Dis. ciaa863 (2020).
Quinti, I. et al. A possible role for B cells in COVID-19?: lesson from patients with Agammaglobulinemia. J. Allergy Clin. Immunol.146, 211–213 (2020). ArticleCASPubMedPubMed Central Google Scholar