Machine learning approaches to drug response prediction: challenges and recent progress (original) (raw)
Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. https://doi.org/10.3322/caac.21492 (2018).
Cronin, K. A. et al. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer124, 2785–2800 (2018). ArticlePubMed Google Scholar
Garraway, L. A., Verweij, J. & Ballman, K. V. Precision oncology: an overview. J. Clin. Oncol.31, 1803–1805 (2013). ArticlePubMed Google Scholar
Doherty, M., Metcalfe, T., Guardino, E., Peters, E. & Ramage, L. Precision medicine and oncology: an overview of the opportunities presented by next-generation sequencing and big data and the challenges posed to conventional drug development and regulatory approval pathways. Ann. Oncol.27, 1644–1646 (2016). ArticleCASPubMed Google Scholar
Heymach, J. et al. Clinical Cancer Advances 2018: annual report on progress against cancer from the American Society of Clinical Oncology. J. Clin. Oncol.36, 1020–1044 (2018). ArticlePubMed Google Scholar
Twomey, J. D., Brahme, N. N. & Zhang, B. Drug-biomarker co-development in oncology—20 years and counting. Drug Resist. Updat30, 48–62 (2017). ArticlePubMed Google Scholar
Johnson, A. et al. The right drugs at the right time for the right patient: the MD Anderson precision oncology decision support platform. Drug Discov. Today20, 1433–1438 (2015). ArticlePubMedPubMed Central Google Scholar
Prasad, V., Kaestner, V. & Mailankody, S. Cancer drugs approved based on biomarkers and not tumor type—FDA approval of pembrolizumab for mismatch repair-deficient solid cancers. JAMA Oncol.4, 157–158 (2018). ArticlePubMed Google Scholar
Drilon, A. et al. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. N. Engl. J. Med.378, 731–739 (2018). ArticleCASPubMedPubMed Central Google Scholar
De Roock, W., De Vriendt, V., Normanno, N., Ciardiello, F. & Tejpar, S. KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer. Lancet Oncol.12, 594–603 (2011). ArticlePubMedCAS Google Scholar
Ding, M. Q., Chen, L., Cooper, G. F., Young, J. D. & Lu, X. Precision oncology beyond targeted therapy: combining omics data with machine learning matches the majority of cancer cells to effective therapeutics. Mol. Cancer Res.16, 269–278 (2018). ArticleCASPubMed Google Scholar
Perez-Gracia, J. L. et al. Strategies to design clinical studies to identify predictive biomarkers in cancer research. Cancer Treat. Rev.53, 79–97 (2017). ArticlePubMed Google Scholar
Dhandapani, M. & Goldman, A. Preclinical cancer models and biomarkers for drug development: new technologies and emerging tools. J. Mol. Biomark. Diagn. 8, 356 (2017).
Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen. Nat. Rev. Cancer6, 813–823 (2006). ArticleCASPubMed Google Scholar
Macarron, R. et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discov.10, 188–195 (2011). ArticleCASPubMed Google Scholar
Smirnov, P. et al. PharmacoDB: an integrative database for mining in vitro anticancer drug screening studies. Nucleic Acids Res.46, D994–D1002 (2018). ArticleCASPubMed Google Scholar
Ling, A., Gruener, R. F., Fessler, J. & Huang, R. S. More than fishing for a cure: the promises and pitfalls of high throughput cancer cell line screens. Pharmacol. Ther. https://doi.org/10.1016/j.pharmthera.2018.06.014 (2018).
Aparicio, S., Hidalgo, M. & Kung, A. L. Examining the utility of patient-derived xenograft mouse models. Nat. Rev. Cancer15, 311–316 (2015). ArticleCASPubMed Google Scholar
Gao, H. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med.21, 1318–1325 (2015). ArticleCASPubMed Google Scholar
McVeigh, T. P. et al. The impact of Oncotype DX testing on breast cancer management and chemotherapy prescribing patterns in a tertiary referral centre. Eur. J. Cancer50, 2763–2770 (2014). ArticlePubMedPubMed Central Google Scholar
Slodkowska, E. A. & Ross, J. S. MammaPrintTM 70-gene signature: another milestone in personalized medical care for breast cancer patients. Expert Rev. Mol. Diagn.9, 417–422 (2009). ArticlePubMed Google Scholar
Azuaje, F. Computational models for predicting drug responses in cancer research. Brief. Bioinform.18, 820–829 (2017). CASPubMed Google Scholar
De Niz, C., Rahman, R., Zhao, X. & Pal, R. Algorithms for drug sensitivity prediction. Algorithms9, 77 (2016). Article Google Scholar
Jang, I. S., Neto, E. C., Guinney, J., Friend, S. H. & Margolin, A. A. Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. Pac. Symp. Biocomput. 19, 63–74 (2014).
Stetson, L. C., Pearl, T., Chen, Y. & Barnholtz-Sloan, J. S. Computational identification of multi-omic correlates of anticancer therapeutic response. BMC Genomics15(Suppl. 7), S2 (2014). ArticlePubMedPubMed Central Google Scholar
Costello, J. C. et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat. Biotechnol.32, 1202–1212 (2014). ArticleCASPubMedPubMed Central Google Scholar
Menden, M. P. et al. A cancer pharmacogenomic screen powering crowd-sourced advancement of drug combination prediction. bioRxiv 200451. https://doi.org/10.1101/200451 (2018).
Papillon-Cavanagh, S. et al. Comparison and validation of genomic predictors for anticancer drug sensitivity. J. Am. Med. Inform. Assoc.20, 597–602 (2013). ArticlePubMedPubMed Central Google Scholar
De Jay, N. et al. mRMRe: an R package for parallelized mRMR ensemble feature selection. Bioinformatics29, 2365–2368 (2013). ArticlePubMedCAS Google Scholar
Gönen, M. & Margolin, A. A. Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning. Bioinformatics30, i556–i563 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Ammad-Ud-Din, M., Khan, S. A., Wennerberg, K. & Aittokallio, T. Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression. Bioinformatics33, i359–i368 (2017). ArticleCASPubMedPubMed Central Google Scholar
Andersen, M. E., Yang, R. S. H., French, C. T., Chubb, L. S. & Dennison, J. E. Molecular circuits, biological switches, and nonlinear dose–response relationships. Environ. Health Perspect.110(Suppl. 6), 971–978 (2002). ArticleCASPubMedPubMed Central Google Scholar
Lee, S.-I. et al. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat. Commun.9, 42 (2018). ArticlePubMedPubMed CentralCAS Google Scholar
Zhang, F., Wang, M., Xi, J., Yang, J. & Li, A. A novel heterogeneous network-based method for drug response prediction in cancer cell lines. Sci. Rep.8, 3355 (2018). ArticlePubMedPubMed CentralCAS Google Scholar
Wang, L., Li, X., Zhang, L. & Gao, Q. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization. BMC Cancer17, 513 (2017). ArticleCASPubMedPubMed Central Google Scholar
El-Deredy, W. et al. Pretreatment prediction of the chemotherapeutic response of human glioma cell cultures using nuclear magnetic resonance spectroscopy and artificial neural networks. Cancer Res.57, 4196–4199 (1997). CASPubMed Google Scholar
Dahl, G. E., Jaitly, N. & Salakhutdinov, R. Multi-task neural networks for QSAR predictions. Preprint at https://arxiv.org/abs/1406.1231 (2014).
Unterthiner, T. et al. Deep learning as an opportunity in virtual screening. in Proc. Deep Learning Workshop at NIPS, NeurIPS workshop, Vol. 27, 1–9 (2014).
Aliper, A. et al. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol. Pharm.13, 2524–2530 (2016). ArticleCASPubMedPubMed Central Google Scholar
Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for Quantum chemistry. in Proceedings of the 34th International Conference on Machine Learning - Vol. 70, 1263–1272 (JMLR.org, 2017).
Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci.4, 268–276 (2018). ArticlePubMedPubMed CentralCAS Google Scholar
Menden, M. P. et al. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS ONE8, e61318 (2013). ArticleCASPubMedPubMed Central Google Scholar
Chang, Y. et al. Cancer drug response profile scan (CDRscan): a deep learning model that predicts drug effectiveness from cancer genomic signature. Sci. Rep.8, 8857 (2018). ArticlePubMedPubMed CentralCAS Google Scholar
Way, G. P. & Greene, C. S. Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders. Pac. Symp. Biocomput23, 80–91 (2018). PubMedPubMed Central Google Scholar
Dincer, A. B., Celik, S., Hiranuma, N. & Lee, S.-I. DeepProfile: deep learning of cancer molecular profiles for precision medicine. bioRxiv 278739. https://doi.org/10.1101/278739 (2018).
Chiu, Y.-C. Predicting drug response of tumors from integrated genomic profiles by deep neural networks. BMC Med. Genomics12, 119 (2019). ArticlePubMedPubMed CentralCAS Google Scholar
Holohan, C., Van Schaeybroeck, S., Longley, D. B. & Johnston, P. G. Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer13, 714–726 (2013). ArticleCASPubMed Google Scholar
Jenh, C. H., Geyer, P. K., Baskin, F. & Johnson, L. F. Thymidylate synthase gene amplification in fluorodeoxyuridine-resistant mouse cell lines. Mol. Pharmacol.28, 80–85 (1985). CASPubMed Google Scholar
Berger, S. H., Jenh, C. H., Johnson, L. F. & Berger, F. G. Thymidylate synthase overproduction and gene amplification in fluorodeoxyuridine-resistant human cells. Mol. Pharmacol.28, 461–467 (1985). CASPubMed Google Scholar
Kobayashi, S. et al. EGFR mutation and resistance of non–small-cell lung cancer to gefitinib. N. Engl. J. Med.352, 786–792 (2005). ArticleCASPubMed Google Scholar
Edwards, S. L. et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature451, 1111–1115 (2008). ArticleCASPubMed Google Scholar
Bouwman, P. & Jonkers, J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat. Rev. Cancer12, 587–598 (2012). ArticleCASPubMed Google Scholar
Meijer, C. et al. Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds. Cancer Res.52, 6885–6889 (1992). CASPubMed Google Scholar
Sun, X.-X. & Yu, Q. Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment. Acta Pharmacol. Sin.36, 1219–1227 (2015). ArticleCASPubMedPubMed Central Google Scholar
Malhotra, V. & Perry, M. C. Classical chemotherapy: mechanisms, toxicities and the therapeutc window. Cancer Biol. Ther.2, 1–3 (2003). Article Google Scholar
Bertram, J. S. The molecular biology of cancer. Mol. Asp. Med.21, 167–223 (2000). ArticleCAS Google Scholar
Sun, W., Sanderson, P. E. & Zheng, W. Drug combination therapy increases successful drug repositioning. Drug Discov. Today21, 1189–1195 (2016). ArticleCASPubMedPubMed Central Google Scholar
Hecht, J. R. et al. A randomized phase IIIB trial of chemotherapy, bevacizumab, and panitumumab compared with chemotherapy and bevacizumab alone for metastatic colorectal cancer. J. Clin. Oncol.27, 672–680 (2009). ArticleCASPubMed Google Scholar
Tol, J. et al. Chemotherapy, bevacizumab, and cetuximab in metastatic colorectal cancer. N. Engl. J. Med360, 563–572 (2009). ArticleCASPubMed Google Scholar
Durand, A. et al. Contextual bandits for adapting treatment in a mouse model of de novo carcinogenesis. In Proc. 3rd Machine Learning for Healthcare Conference (eds. Doshi-Velez, F. et al.) Vol. 85, 67–82 (PMLR, 2018).
Ianevski, A., He, L., Aittokallio, T. & Tang, J. SynergyFinder: a web application for analyzing drug combination dose–response matrix data. Bioinformatics33, 2413–2415 (2017). ArticlePubMedPubMed CentralCAS Google Scholar
Bliss, C. I. The toxicity of poisons applied jointly 1. Ann. Appl. Biol.26, 585–615 (1939). ArticleCAS Google Scholar
Li, X. et al. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Artif. Intell. Med.83, 35–43 (2017). ArticlePubMed Google Scholar
Weiss, A. et al. Rapid optimization of drug combinations for the optimal angiostatic treatment of cancer. Angiogenesis18, 233–244 (2015). ArticleCASPubMedPubMed Central Google Scholar
Nowak-Sliwinska, P. et al. Optimization of drug combinations using Feedback System Control. Nat. Protoc.11, 302–315 (2016). ArticleCASPubMed Google Scholar
Preuer, K. et al. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning. Bioinformatics34, 1538–1546 (2018). ArticleCASPubMed Google Scholar
Fangfang Xia et al. Predicting tumor cell line response to drug pairs with deep learning. In Computational Approaches for Cancer Workshop at SC17. Available at: http://www.scworkshops.net/cancer2017/ (2017). (Accessed 20 Nov 2018).
Holbeck, S. L. et al. The National Cancer Institute ALMANAC: a comprehensive screening resource for the detection of anticancer drug pairs with enhanced therapeutic activity. Cancer Res.77, 3564–3576 (2017). ArticleCASPubMedPubMed Central Google Scholar
Mauri, A., Consonni, V., Pavan, M. & Todeschini, R. Dragon software: an easy approach to molecular descriptor calculations. Match56, 237–248 (2006). CAS Google Scholar
Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med.50, 96 (2018). ArticlePubMed CentralCAS Google Scholar
Ortega, M. A. et al. Using single-cell multiple omics approaches to resolve tumor heterogeneity. Clin. Transl. Med.6, 46 (2017). ArticlePubMedPubMed Central Google Scholar
Roth, A. et al. Clonal genotype and population structure inference from single-cell tumor sequencing. Nat. Methods13, 573–576 (2016). ArticleCASPubMed Google Scholar
Qi, R., Ma, A., Ma, Q. & Zou, Q. Clustering and classification methods for single-cell RNA-sequencing data. Brief. Bioinform. https://doi.org/10.1093/bib/bbz062 (2019).
Shalek, A. K. & Benson, M. Single-cell analyses to tailor treatments. Sci. Transl. Med. 9, eaan4730 (2017).
Zhu, S., Qing, T., Zheng, Y., Jin, L. & Shi, L. Advances in single-cell RNA sequencing and its applications in cancer research. Oncotarget8, 53763–53779 (2017). ArticlePubMedPubMed Central Google Scholar
Baran-Gale, J., Chandra, T. & Kirschner, K. Experimental design for single-cell RNA sequencing. Brief. Funct. Genomics17, 233–239 (2018). ArticleCASPubMed Google Scholar
Suzuki, A. et al. Single-cell analysis of lung adenocarcinoma cell lines reveals diverse expression patterns of individual cells invoked by a molecular target drug treatment. Genome Biol.16, 66 (2015). ArticlePubMedPubMed CentralCAS Google Scholar
Kim, K.-T. et al. Application of single-cell RNA sequencing in optimizing a combinatorial therapeutic strategy in metastatic renal cell carcinoma. Genome Biol.17, 80 (2016). ArticlePubMedPubMed CentralCAS Google Scholar
Yang, W. et al. Genomics of drug sensitivity in cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res.41, D955–D961 (2013). ArticleCASPubMed Google Scholar
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol.36, 411–420 (2018). ArticleCASPubMedPubMed Central Google Scholar
Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor. F1000Res5, 2122 (2016). PubMedPubMed Central Google Scholar
Amodio, M. et al. Exploring single-cell data with deep multitasking neural networks. bioRxiv 237065. https://doi.org/10.1101/237065 (2018).
Ding, J., Condon, A. & Shah, S. P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun.9, 2002 (2018). ArticlePubMedPubMed CentralCAS Google Scholar
Wang, D. & Gu, J. VASC: dimension reduction and visualization of single cell RNA sequencing data by deep variational autoencoder. bioRxiv 199315. https://doi.org/10.1101/199315 (2017).
Risso, D. et al. clusterExperiment and RSEC: A Bioconductor package and framework for clustering of single-cell and other large gene expression datasets. PLoS Comput. Biol.14, e1006378 (2018). ArticlePubMedPubMed CentralCAS Google Scholar
Li, H. et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat. Genet.49, 708–718 (2017). ArticleCASPubMed Google Scholar
Anchang, B. et al. DRUG-NEM: Optimizing drug combinations using single-cell perturbation response to account for intratumoral heterogeneity. Proc. Natl Acad. Sci. USA115, E4294–E4303 (2018). ArticleCASPubMedPubMed Central Google Scholar
Haverty, P. M. et al. Reproducible pharmacogenomic profiling of cancer cell line panels. Nature533, 333–337 (2016). ArticleCASPubMed Google Scholar
Hamilton, W. et al. Inductive representation learning on large graphs. In Neural Information Processing Systems 1024–1034 (Curran Associates, Inc., 2017).
Kearnes, S., McCloskey, K., Berndl, M., Pande, V. & Riley, P. Molecular graph convolutions: moving beyond fingerprints. J. Comput. Aided Mol. Des.30, 595–608 (2016). ArticleCASPubMedPubMed Central Google Scholar
Hertel, L., Barth, E., Kaster, T. & Martinetz, T. Deep convolutional neural networks as generic feature extractors. In 2015 International Joint Conference on Neural Networks (IJCNN). https://doi.org/10.1109/ijcnn.2015.7280683 (2015).
Zoph, B. & Le, Q. V. Neural architecture search with reinforcement learning. Preprint at https://arxiv.org/abs/1611.01578 (2016).
Li, L. & Talwalkar, A. Random search and reproducibility for neural architecture search. Preprint at https://arxiv.org/abs/1902.07638 (2019).
Rampášek, L., Hidru, D., Smirnov, P., Haibe-Kains, B. & Goldenberg, A. Dr.VAE: Improving drug response prediction via modeling of drug perturbation effects. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz158 (2019).
Zhang, Z. et al. Deep learning in omics: a survey and guideline. Brief. Funct. Genomics18, 41–57 (2019). ArticleCASPubMed Google Scholar
Ivanov, A. A., Khuri, F. R. & Fu, H. Targeting protein–protein interactions as an anticancer strategy. Trends Pharmacol. Sci.34, 393–400 (2013). ArticleCASPubMedPubMed Central Google Scholar
Smirnov, P. et al. PharmacoGx: an R package for analysis of large pharmacogenomic datasets. Bioinformatics32, 1244–1246 (2016). ArticleCASPubMed Google Scholar
Rajapakse, V. N., Luna, A., Yamade, M., Loman, L. & Varma, S. Integrative analysis of pharmacogenomics in major cancer cell line databases using CellMinerCDB. bioRxivhttps://doi.org/10.1101/292904 (2018).
Gupta, S. et al. Prioritization of anticancer drugs against a cancer using genomic features of cancer cells: A step towards personalized medicine. Sci. Rep.6, 23857 (2016). ArticleCASPubMedPubMed Central Google Scholar
Mer, A. S. et al. Integrative pharmacogenomics analysis of patient derived xenografts. Cancer Res. 471227. https://doi.org/10.1101/471227 (2019).
Lee, J.-K. et al. Pharmacogenomic landscape of patient-derived tumor cells informs precision oncology therapy. Nat. Genet.50, 1399–1411 (2018). ArticleCASPubMedPubMed Central Google Scholar
He, X., Folkman, L. & Borgwardt, K. Kernelized rank learning for personalized drug recommendation. Bioinformatics34, 2808–2816 (2018). ArticleCASPubMedPubMed Central Google Scholar
Deshwar, A. G. et al. PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome Biol.16, 35 (2015). ArticlePubMedPubMed Central Google Scholar
Jiang, Y., Qiu, Y., Minn, A. J. & Zhang, N. R. Assessing intratumor heterogeneity and tracking longitudinal and spatial clonal evolutionary history by next-generation sequencing. Proc. Natl Acad. Sci. USA113, E5528–E5537 (2016). ArticleCASPubMedPubMed Central Google Scholar
El-Kebir, M., Satas, G., Oesper, L. & Raphael, B. J. Inferring the mutational history of a tumor using multi-state perfect phylogeny mixtures. Cell Syst.3, 43–53 (2016). ArticleCASPubMed Google Scholar
Miller, C. A. et al. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput. Biol.10, e1003665 (2014). ArticlePubMedPubMed CentralCAS Google Scholar
Oesper, L., Satas, G. & Raphael, B. J. Quantifying tumor heterogeneity in whole-genome and whole-exome sequencing data. Bioinformatics30, 3532–3540 (2014). ArticleCASPubMedPubMed Central Google Scholar
O’Neil, J. et al. An unbiased oncology compound screen to identify novel combination strategies. Mol. Cancer Ther.15, 1155–1162 (2016). ArticlePubMedCAS Google Scholar