Structure–function–rescue: the diverse nature of common p53 cancer mutants (original) (raw)
Aguilar F, Hussain SP, Cerutti P . (1993). Aflatoxin B1 induces the transversion of G → T in codon 249 of the p53 tumor suppressor gene in human hepatocytes. Proc Natl Acad Sci USA90: 8586–8590. ArticleCASPubMedPubMed Central Google Scholar
Ang HC, Joerger AC, Mayer S, Fersht AR . (2006). Effects of common cancer mutations on stability and DNA binding of full-length p53 compared with isolated core domains. J Biol Chem281: 21934–21941. ArticleCASPubMed Google Scholar
Balagurumoorthy P, Sakamoto H, Lewis MS, Zambrano N, Clore GM, Gronenborn AM et al. (1995). Four p53 DNA-binding domain peptides bind natural p53-response elements and bend the DNA. Proc Natl Acad Sci USA92: 8591–8595. ArticleCASPubMedPubMed Central Google Scholar
Baroni TE, Wang T, Qian H, Dearth LR, Truong LN, Zeng J et al. (2004). A global suppressor motif for p53 cancer mutants. Proc Natl Acad Sci USA101: 4930–4935. ArticleCASPubMedPubMed Central Google Scholar
Bell S, Klein C, Muller L, Hansen S, Buchner J . (2002). p53 contains large unstructured regions in its native state. J Mol Biol322: 917–927. ArticleCASPubMed Google Scholar
Blagosklonny MV . (2000). p53 from complexity to simplicity: mutant p53 stabilization, gain-of-function, and dominant-negative effect. FASEB J14: 1901–1907. ArticleCASPubMed Google Scholar
Bode AM, Dong Z . (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer4: 793–805. ArticleCASPubMed Google Scholar
Brachmann RK, Yu K, Eby Y, Pavletich NP, Boeke JD . (1998). Genetic selection of intragenic suppressor mutations that reverse the effect of common p53 cancer mutations. EMBO J17: 1847–1859. ArticleCASPubMedPubMed Central Google Scholar
Braithwaite AW, Del Sal G, Lu X . (2006). Some p53-binding proteins that can function as arbiters of life and death. Cell Death Differ13: 984–993. ArticleCASPubMed Google Scholar
Buckle AM, Cramer P, Fersht AR . (1996). Structural and energetic responses to cavity-creating mutations in hydrophobic cores: observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities. Biochemistry35: 4298–4305. ArticleCASPubMed Google Scholar
Buckle AM, Henrick K, Fersht AR . (1993). Crystal structural analysis of mutations in the hydrophobic cores of barnase. J Mol Biol234: 847–860. ArticleCASPubMed Google Scholar
Bullock AN, Henckel J, Fersht AR . (2000). Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene19: 1245–1256. ArticleCASPubMed Google Scholar
Buschmann T, Minamoto T, Wagle N, Fuchs SY, Adler V, Mai M et al. (2000). Analysis of JNK, Mdm2 and p14(ARF) contribution to the regulation of mutant p53 stability. J Mol Biol295: 1009–1021. ArticleCASPubMed Google Scholar
Butler JS, Loh SN . (2003). Structure, function, and aggregation of the zinc-free form of the p53 DNA binding domain. Biochemistry42: 2396–2403. ArticleCASPubMed Google Scholar
Butler JS, Loh SN . (2005). Kinetic partitioning during folding of the p53 DNA binding domain. J Mol Biol350: 906–918. ArticleCASPubMed Google Scholar
Bykov VJ, Selivanova G, Wiman KG . (2003). Small molecules that reactivate mutant p53. Eur J Cancer39: 1828–1834. ArticleCASPubMed Google Scholar
Canadillas JM, Tidow H, Freund SM, Rutherford TJ, Ang HC, Fersht AR . (2006). Solution structure of p53 core domain: structural basis for its instability. Proc Natl Acad Sci USA103: 2109–2114. ArticlePubMedPubMed CentralCAS Google Scholar
Chan WM, Siu WY, Lau A, Poon RY . (2004). How many mutant p53 molecules are needed to inactivate a tetramer? Mol Cell Biol24: 3536–3551. ArticleCASPubMedPubMed Central Google Scholar
Chène P . (2001). The role of tetramerization in p53 function. Oncogene20: 2611–2617. ArticlePubMed Google Scholar
Cho Y, Gorina S, Jeffrey PD, Pavletich NP . (1994). Crystal structure of a p53 tumor suppressor–DNA complex: understanding tumorigenic mutations. Science265: 346–355. ArticleCASPubMed Google Scholar
Clore GM, Ernst J, Clubb R, Omichinski JG, Kennedy WM, Sakaguchi K et al. (1995). Refined solution structure of the oligomerization domain of the tumour suppressor p53. Nat Struct Biol2: 321–333. ArticleCASPubMed Google Scholar
Cuff AL, Janes RW, Martin AC . (2006). Analysing the ability to retain sidechain hydrogen-bonds in mutant proteins. Bioinformatics22: 1464–1470. ArticleCASPubMed Google Scholar
Cuff AL, Martin AC . (2004). Analysis of void volumes in proteins and application to stability of the p53 tumour suppressor protein. J Mol Biol344: 1199–1209. ArticleCASPubMed Google Scholar
Dawson R, Muller L, Dehner A, Klein C, Kessler H, Buchner J . (2003). The N-terminal domain of p53 is natively unfolded. J Mol Biol332: 1131–1141. ArticleCASPubMed Google Scholar
Dearth LR, Qian H, Wang T, Baroni TE, Zeng J, Chen SW et al. (2007). Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss-of-heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis28: 289–298. ArticleCASPubMed Google Scholar
Dehner A, Klein C, Hansen S, Müller L, Buchner J, Schwaiger M et al. (2005). Cooperative binding of p53 to DNA: regulation by protein–protein interactions through a double salt bridge. Angew Chem Int Edn Engl44: 5247–5251. ArticleCAS Google Scholar
DeLano WL . (2002). The PyMOL Molecular Graphics System. DeLano Scientific: San Carlos, CA. Google Scholar
Derbyshire DJ, Basu BP, Serpell LC, Joo WS, Date T, Iwabuchi K et al. (2002). Crystal structure of human 53BP1 BRCT domains bound to p53 tumour suppressor. EMBO J21: 3863–3872. ArticleCASPubMedPubMed Central Google Scholar
Di Como CJ, Prives C . (1998). Human tumor-derived p53 proteins exhibit binding site selectivity and temperature sensitivity for transactivation in a yeast-based assay. Oncogene16: 2527–2539. ArticleCASPubMed Google Scholar
DiGiammarino EL, Lee AS, Cadwell C, Zhang W, Bothner B, Ribeiro RC et al. (2002). A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat Struct Biol9: 12–16. ArticleCASPubMed Google Scholar
Duan J, Nilsson L . (2006). Effect of Zn2+ on DNA recognition and stability of the p53 DNA-binding domain. Biochemistry45: 7483–7492. ArticleCASPubMed Google Scholar
Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN . (2005). Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J272: 5129–5148. ArticleCASPubMed Google Scholar
el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B . (1992). Definition of a consensus binding site for p53. Nat Genet1: 45–49. ArticleCASPubMed Google Scholar
Eriksson AE, Baase WA, Zhang XJ, Heinz DW, Blaber M, Baldwin EP et al. (1992). Response of a protein structure to cavity-creating mutations and its relation to the hydrophobic effect. Science255: 178–183. ArticleCASPubMed Google Scholar
Friedler A, DeDecker BS, Freund SM, Blair C, Rüdiger S, Fersht AR . (2004). Structural distortion of p53 by the mutation R249S and its rescue by a designed peptide: implications for ‘mutant conformation’. J Mol Biol336: 187–196. ArticleCASPubMed Google Scholar
Friedler A, Hansson LO, Veprintsev DB, Freund SM, Rippin TM, Nikolova PV et al. (2002). A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc Natl Acad Sci USA99: 937–942. ArticleCASPubMedPubMed Central Google Scholar
Friedler A, Veprintsev DB, Freund SM, von Glos KI, Fersht AR . (2005a). Modulation of binding of DNA to the C-terminal domain of p53 by acetylation. Structure13: 629–636. ArticleCASPubMed Google Scholar
Friedler A, Veprintsev DB, Hansson LO, Fersht AR . (2003). Kinetic instability of p53 core domain mutants: implications for rescue by small molecules. J Biol Chem278: 24108–24112. ArticleCASPubMed Google Scholar
Friedler A, Veprintsev DB, Rutherford T, von Glos KI, Fersht AR . (2005b). Binding of Rad51 and other peptide sequences to a promiscuous, highly electrostatic binding site in p53. J Biol Chem280: 8051–8059. ArticleCASPubMed Google Scholar
Gannon JV, Greaves R, Iggo R, Lane DP . (1990). Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J9: 1595–1602. ArticleCASPubMedPubMed Central Google Scholar
Ghebranious N, Knoll BJ, Wu H, Lozano G, Sell S . (1995). Characterization of a murine p53ser246 mutant equivalent to the human p53ser249 associated with hepatocellular carcinoma and aflatoxin exposure. Mol Carcinog13: 104–111. ArticleCASPubMed Google Scholar
Gorina S, Pavletich NP . (1996). Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Science274: 1001–1005. ArticleCASPubMed Google Scholar
Grossman SR . (2001). p300/CBP/p53 interaction and regulation of the p53 response. Eur J Biochem268: 2773–2778. ArticleCASPubMed Google Scholar
Gu W, Shi XL, Roeder RG . (1997). Synergistic activation of transcription by CBP and p53. Nature387: 819–823. ArticleCASPubMed Google Scholar
Hamroun D, Kato S, Ishioka C, Claustres M, Beroud C, Soussi T . (2006). The UMD TP53 database and website: update and revisions. Hum Mutat27: 14–20. ArticleCASPubMed Google Scholar
Higashimoto Y, Asanomi Y, Takakusagi S, Lewis MS, Uosaki K, Durell SR et al. (2006). Unfolding, aggregation, and amyloid formation by the tetramerization domain from mutant p53 associated with lung cancer. Biochemistry45: 1608–1619. ArticleCASPubMed Google Scholar
Ho WC, Fitzgerald MX, Marmorstein R . (2006). Structure of the p53 core domain dimer bound to DNA. J Biol Chem281: 20494–20502. ArticleCASPubMed Google Scholar
Huyen Y, Jeffrey PD, Derry WB, Rothman JH, Pavletich NP, Stavridi ES et al. (2004). Structural differences in the DNA binding domains of human p53 and its C. elegans ortholog Cep-1. Structure12: 1237–1243. ArticleCASPubMed Google Scholar
Inga A, Monti P, Fronza G, Darden T, Resnick MA . (2001). p53 mutants exhibiting enhanced transcriptional activation and altered promoter selectivity are revealed using a sensitive, yeast-based functional assay. Oncogene20: 501–513. ArticleCASPubMed Google Scholar
Ishioka C, Shimodaira H, Englert C, Shimada A, Osada M, Jia LQ et al. (1997). Oligomerization is not essential for growth suppression by p53 in p53-deficient osteosarcoma Saos-2 cells. Biochem Biophys Res Commun232: 54–60. ArticleCASPubMed Google Scholar
Issaeva N, Friedler A, Bozko P, Wiman KG, Fersht AR, Selivanova G . (2003). Rescue of mutants of the tumor suppressor p53 in cancer cells by a designed peptide. Proc Natl Acad Sci USA100: 13303–13307. ArticleCASPubMedPubMed Central Google Scholar
Jeffrey PD, Gorina S, Pavletich NP . (1995). Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science267: 1498–1502. ArticleCASPubMed Google Scholar
Joerger AC, Allen MD, Fersht AR . (2004). Crystal structure of a superstable mutant of human p53 core domain. Insights into the mechanism of rescuing oncogenic mutations. J Biol Chem279: 1291–1296. ArticleCASPubMed Google Scholar
Joerger AC, Ang HC, Veprintsev DB, Blair CM, Fersht AR . (2005). Crystal structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations. J Biol Chem280: 16030–16037. ArticleCASPubMed Google Scholar
Joerger AC, Ang HC, Fersht AR . (2006). Structural basis for understanding oncogenic p53 mutations and designing rescue drugs. Proc Natl Acad Sci USA103: 15056–15061. ArticleCASPubMedPubMed Central Google Scholar
Joo WS, Jeffrey PD, Cantor SB, Finnin MS, Livingston DM, Pavletich NP . (2002). Structure of the 53BP1 BRCT region bound to p53 and its comparison to the Brca1 BRCT structure. Genes Dev16: 583–593. ArticleCASPubMedPubMed Central Google Scholar
Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R et al. (2003). Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA100: 8424–8429. ArticleCASPubMedPubMed Central Google Scholar
Kawaguchi T, Kato S, Otsuka K, Watanabe G, Kumabe T, Tominaga T et al. (2005). The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library. Oncogene24: 6976–6981. ArticleCASPubMed Google Scholar
Kitayner M, Rozenberg H, Kessler N, Rabinovich D, Shaulov L, Haran TE et al. (2006). Structural basis of DNA recognition by p53 tetramers. Mol Cell22: 741–753. ArticleCASPubMed Google Scholar
Klein C, Planker E, Diercks T, Kessler H, Kunkele KP, Lang K et al. (2001). NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA. J Biol Chem276: 49020–49027. ArticleCASPubMed Google Scholar
Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ et al. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science274: 948–953. ArticleCASPubMed Google Scholar
Laurent-Puig P, Zucman-Rossi J . (2006). Genetics of hepatocellular tumors. Oncogene25: 3778–3786. ArticleCASPubMed Google Scholar
Lavin MF, Gueven N . (2006). The complexity of p53 stabilization and activation. Cell Death Differ13: 941–950. ArticleCASPubMed Google Scholar
Lee H, Mok KH, Muhandiram R, Park KH, Suk JE, Kim DH et al. (2000). Local structural elements in the mostly unstructured transcriptional activation domain of human p53. J Biol Chem275: 29426–29432. ArticleCASPubMed Google Scholar
Legros Y, Meyer A, Ory K, Soussi T . (1994). Mutations in p53 produce a common conformational effect that can be detected with a panel of monoclonal antibodies directed toward the central part of the p53 protein. Oncogene9: 3689–3694. CASPubMed Google Scholar
Lilyestrom W, Klein MG, Zhang R, Joachimiak A, Chen XS . (2006). Crystal structure of SV40 large T-antigen bound to p53: interplay between a viral oncoprotein and a cellular tumor suppressor. Genes Dev20: 2373–2382. ArticleCASPubMedPubMed Central Google Scholar
Lu H, Levine AJ . (1995). Human TAFII31 protein is a transcriptional coactivator of the p53 protein. Proc Natl Acad Sci USA92: 5154–5158. ArticleCASPubMedPubMed Central Google Scholar
Lunter G, Hein J . (2004). A nucleotide substitution model with nearest-neighbour interactions. Bioinformatics20 (Suppl 1): I216–I223. ArticleCASPubMed Google Scholar
Marine JC, Francoz S, Maetens M, Wahl G, Toledo F, Lozano G . (2006). Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ13: 927–934. ArticleCASPubMed Google Scholar
Mateu MG, Fersht AR . (1998). Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain. EMBO J17: 2748–2758. ArticleCASPubMedPubMed Central Google Scholar
Mateu MG, Fersht AR . (1999). Mutually compensatory mutations during evolution of the tetramerization domain of tumor suppressor p53 lead to impaired hetero-oligomerization. Proc Natl Acad Sci USA96: 3595–3599. ArticleCASPubMedPubMed Central Google Scholar
Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV . (2006a). Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res34: 1317–1325. ArticleCASPubMedPubMed Central Google Scholar
Mathe E, Olivier M, Kato S, Ishioka C, Vaisman I, Hainaut P . (2006b). Predicting the transactivation activity of p53 missense mutants using a four-body potential score derived from Delaunay tessellations. Hum Mutat27: 163–172. ArticleCASPubMed Google Scholar
Menendez D, Inga A, Resnick MA . (2006). The biological impact of the human master regulator p53 can be altered by mutations that change the spectrum and expression of its target genes. Mol Cell Biol26: 2297–2308. ArticleCASPubMedPubMed Central Google Scholar
Midgley CA, Lane DP . (1997). p53 protein stability in tumour cells is not determined by mutation but is dependent on Mdm2 binding. Oncogene15: 1179–1189. ArticleCASPubMed Google Scholar
Mittl PR, Chene P, Grutter MG . (1998). Crystallization and structure solution of p53 (residues 326–356) by molecular replacement using an NMR model as template. Acta Crystallogr D54: 86–89. ArticleCASPubMed Google Scholar
Momand J, Wu HH, Dasgupta G . (2000). MDM2 – master regulator of the p53 tumor suppressor protein. Gene242: 15–29. ArticleCASPubMed Google Scholar
Müller-Tiemann BF, Halazonetis TD, Elting JJ . (1998). Identification of an additional negative regulatory region for p53 sequence-specific DNA binding. Proc Natl Acad Sci USA95: 6079–6084. ArticlePubMedPubMed Central Google Scholar
Nicholls CD, McLure KG, Shields MA, Lee PW . (2002). Biogenesis of p53 involves cotranslational dimerization of monomers and posttranslational dimerization of dimers. Implications on the dominant negative effect. J Biol Chem277: 12937–12945. ArticleCASPubMed Google Scholar
Nikolova PV, Henckel J, Lane DP, Fersht AR . (1998). Semirational design of active tumor suppressor p53 DNA binding domain with enhanced stability. Proc Natl Acad Sci USA95: 14675–14680. ArticleCASPubMedPubMed Central Google Scholar
Nikolova PV, Wong KB, DeDecker B, Henckel J, Fersht AR . (2000). Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations. EMBO J19: 370–378. ArticleCASPubMedPubMed Central Google Scholar
Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P . (2002). The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat19: 607–614. ArticleCASPubMed Google Scholar
Olivier M, Goldgar DE, Sodha N, Ohgaki H, Kleihues P, Hainaut P et al. (2003). Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res63: 6643–6650. CASPubMed Google Scholar
Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J et al. (2006). The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res12: 1157–1167. ArticleCASPubMed Google Scholar
Pan Y, Ma B, Venkataraghavan RB, Levine AJ, Nussinov R . (2005). In the quest for stable rescuing mutants of p53: computational mutagenesis of flexible loop L1. Biochemistry44: 1423–1432. ArticleCASPubMed Google Scholar
Pan Y, Ma B, Levine AJ, Nussinov R . (2006). Comparison of the human and worm p53 structures suggests a way for enhancing stability. Biochemistry45: 3925–3933. ArticleCASPubMed Google Scholar
Petitjean A, Achatz MIW, Borresen-Dale AL, Hainaut P, Olivier M . (2007). TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes Oncogene. In press.
Poon A, Davis BH, Chao L . (2005). The coupon collector and the suppressor mutation: estimating the number of compensatory mutations by maximum likelihood. Genetics170: 1323–1332. ArticleCASPubMedPubMed Central Google Scholar
Poteete AR, Sun DP, Nicholson H, Matthews BW . (1991). Second-site revertants of an inactive T4 lysozyme mutant restore activity by restructuring the active site cleft. Biochemistry30: 1425–1432. ArticleCASPubMed Google Scholar
Qian H, Wang T, Naumovski L, Lopez CD, Brachmann RK . (2002). Groups of p53 target genes involved in specific p53 downstream effects cluster into different classes of DNA binding sites. Oncogene21: 7901–7911. ArticleCASPubMed Google Scholar
Resnick MA, Inga A . (2003). Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity. Proc Natl Acad Sci USA100: 9934–9939. ArticleCASPubMedPubMed Central Google Scholar
Rippin TM, Freund SM, Veprintsev DB, Fersht AR . (2002). Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding. J Mol Biol319: 351–358. ArticleCASPubMed Google Scholar
Rosal R, Pincus MR, Brandt-Rauf PW, Fine RL, Michl J, Wang H . (2004). NMR solution structure of a peptide from the mdm-2 binding domain of the p53 protein that is selectively cytotoxic to cancer cells. Biochemistry43: 1854–1861. ArticleCASPubMed Google Scholar
Rustandi RR, Baldisseri DM, Weber DJ . (2000). Structure of the negative regulatory domain of p53 bound to S100B(betabeta). Nat Struct Biol7: 570–574. ArticleCASPubMed Google Scholar
Ryan KM, Vousden KH . (1998). Characterization of structural p53 mutants which show selective defects in apoptosis but not cell cycle arrest. Mol Cell Biol18: 3692–3698. ArticleCASPubMedPubMed Central Google Scholar
Sakaguchi K, Sakamoto H, Xie D, Erickson JW, Lewis MS, Anderson CW et al. (1997). Effect of phosphorylation on tetramerization of the tumor suppressor protein p53. J Protein Chem16: 553–556. ArticleCASPubMed Google Scholar
Saller E, Tom E, Brunori M, Otter M, Estreicher A, Mack DH et al. (1999). Increased apoptosis induction by 121F mutant p53. EMBO J18: 4424–4437. ArticleCASPubMedPubMed Central Google Scholar
Serrano L, Kellis Jr JT, Cann P, Matouschek A, Fersht AR . (1992). The folding of an enzyme. II. Substructure of barnase and the contribution of different interactions to protein stability. J Mol Biol224: 783–804. ArticleCASPubMed Google Scholar
Shiraishi K, Kato S, Han SY, Liu W, Otsuka K, Sakayori M et al. (2004). Isolation of temperature-sensitive p53 mutations from a comprehensive missense mutation library. J Biol Chem279: 348–355. ArticleCASPubMed Google Scholar
Sigal A, Rotter V . (2000). Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res60: 6788–6793. CASPubMed Google Scholar
Stephen CW, Lane DP . (1992). Mutant conformation of p53. Precise epitope mapping using a filamentous phage epitope library. J Mol Biol225: 577–583. ArticleCASPubMed Google Scholar
Sujatha S, Ishihama A, Chatterji D . (2001). Functional complementation between mutations at two distant positions in Escherichia coli RNA polymerase as revealed by second-site suppression. Mol Gen Genet264: 531–538. ArticleCASPubMed Google Scholar
Thut CJ, Chen JL, Klemm R, Tjian R . (1995). p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science267: 100–104. ArticleCASPubMed Google Scholar
Tidow H, Veprintsev DB, Freund SM, Fersht AR . (2006). Effects of oncogenic mutations and DNA response elements on the binding of p53 to p53 binding protein 2 (53BP2). J Biol Chem281: 32526–32533. ArticleCASPubMed Google Scholar
Veprintsev DB, Freund SM, Andreeva A, Rutledge SE, Tidow H, Canadillas JM et al. (2006). Core domain interactions in full-length p53 in solution. Proc Natl Acad Sci USA103: 2115–2119. ArticleCASPubMedPubMed Central Google Scholar
Walker KK, Levine AJ . (1996). Identification of a novel p53 functional domain that is necessary for efficient growth suppression. Proc Natl Acad Sci USA93: 15335–15340. ArticleCASPubMedPubMed Central Google Scholar
Wang PL, Sait F, Winter G . (2001). The ‘wildtype’ conformation of p53: epitope mapping using hybrid proteins. Oncogene20: 2318–2324. ArticleCASPubMed Google Scholar
Weinberg RL, Freund SM, Veprintsev DB, Bycroft M, Fersht AR . (2004a). Regulation of DNA binding of p53 by its C-terminal domain. J Mol Biol342: 801–811. ArticleCASPubMed Google Scholar
Weinberg RL, Veprintsev DB, Fersht AR . (2004b). Cooperative binding of tetrameric p53 to DNA. J Mol Biol341: 1145–1159. ArticleCASPubMed Google Scholar
Weinberg RL, Veprintsev DB, Bycroft M, Fersht AR . (2005). Comparative binding of p53 to its promoter and DNA recognition elements. J Mol Biol348: 589–596. ArticleCASPubMed Google Scholar
Wieczorek AM, Waterman JL, Waterman MJ, Halazonetis TD . (1996). Structure-based rescue of common tumor-derived p53 mutants. Nat Med2: 1143–1146. ArticleCASPubMed Google Scholar
Wiman KG . (2006). Strategies for therapeutic targeting of the p53 pathway in cancer. Cell Death Differ13: 921–926. ArticleCASPubMed Google Scholar
Wong KB, DeDecker BS, Freund SM, Proctor MR, Bycroft M, Fersht AR . (1999). Hot-spot mutants of p53 core domain evince characteristic local structural changes. Proc Natl Acad Sci USA96: 8438–8442. ArticleCASPubMedPubMed Central Google Scholar
Wray JW, Baase WA, Lindstrom JD, Weaver LH, Poteete AR, Matthews BW . (1999). Structural analysis of a non-contiguous second-site revertant in T4 lysozyme shows that increasing the rigidity of a protein can enhance its stability. J Mol Biol292: 1111–1120. ArticleCASPubMed Google Scholar
Xu J, Baase WA, Baldwin E, Matthews BW . (1998). The response of T4 lysozyme to large-to-small substitutions within the core and its relation to the hydrophobic effect. Protein Sci7: 158–177. ArticleCASPubMedPubMed Central Google Scholar
Yip YL, Zoete V, Scheib H, Michielin O . (2006). Structural assessment of single amino acid mutations: application to TP53 function. Hum Mutat27: 926–937. ArticleCASPubMed Google Scholar
Zhao K, Chai X, Johnston K, Clements A, Marmorstein R . (2001). Crystal structure of the mouse p53 core DNA-binding domain at 2.7 A resolution. J Biol Chem276: 12120–12127. ArticleCASPubMed Google Scholar
Zupnick A, Prives C . (2006). Mutational analysis of the p53 core domain L1 loop. J Biol Chem281: 20464–20473. ArticleCASPubMed Google Scholar