Homologous recombination repair is regulated by domains at the N- and C-terminus of NBS1 and is dissociated with ATM functions (original) (raw)
Bolderson E, Scorah J, Helleday T, Smythe C, Meuth M . (2004). ATM is required for the cellular response to thymidine induced replication fork stress. Hum Mol Genet13: 2937–2945. ArticleCASPubMed Google Scholar
Bressan DA, Baxter BK, Petrini JH . (1999). The Mre11-Rad50-Xrs2 protein complex facilitates homologous recombination-based double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol19: 7681–7687. ArticleCASPubMedPubMed Central Google Scholar
Celeste A, Fernandez-Capetillo O, Kruhlak MJ, Pilch DR, Staudt DW, Lee A et al. (2003). Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol5: 675–679. ArticleCASPubMed Google Scholar
Cerosaletti KM, Concannon P . (2003). Nibrin forkhead-associated domain and breast cancer C-terminal domain are both required for nuclear focus formation and phosphorylation. J Biol Chem278: 21944–21951. ArticleCASPubMed Google Scholar
Falck J, Coates J, Jackson SP . (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature434: 605–611. ArticleCASPubMed Google Scholar
Golding SE, Rosenberg E, Khalil A, McEwen A, Holmes M, Neill S et al. (2004). Double strand break repair by homologous recombination is regulated by cell cycle-independent signaling via ATM in human glioma cells. J Biol Chem279: 15402–15410. ArticleCASPubMed Google Scholar
Greenberg RA, Sobhian B, Pathania S, Cantor SB, Nakatani Y, Livingston DM . (2006). Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev20: 34–46. ArticleCASPubMedPubMed Central Google Scholar
Horejsi Z, Falck J, Bakkenist CJ, Kastan MB, Lukas J, Bartek J . (2004). Distinct functional domains of Nbs1 modulate the timing and magnitude of ATM activation after low doses of ionizing radiation. Oncogene23: 3122–3127. ArticleCASPubMed Google Scholar
Jasin M . (2002). Homologous repair of DNA damage and tumorigenesis: the BRCA connection. Oncogene21: 8981–8993. ArticleCASPubMed Google Scholar
Kim JS, Krasieva TB, LaMorte V, Taylor AM, Yokomori K . (2002). Specific recruitment of human cohesin to laser-induced DNA damage. J Biol Chem277: 45149–45153. ArticleCASPubMed Google Scholar
Kobayashi J, Antoccia A, Tauchi H, Matsuura S, Komatsu K . (2004). NBS1 and its functional role in the DNA damage response. DNA Repair3: 855–861. ArticleCASPubMed Google Scholar
Kobayashi J, Tauchi H, Sakamoto S, Nakamura A, Morishima K, Matsuura S et al. (2002). NBS1 localizes to gamma-H2AX foci through interaction with the FHA/BRCT domain. Curr Biol12: 1846–1851. ArticleCASPubMed Google Scholar
Lavin MF . (2004). The Mre11 complex and ATM: a two-way functional interaction in recognising and signaling DNA double strand breaks. DNA Repair3: 1515–1520. ArticleCASPubMed Google Scholar
Lim DS, Kim ST, Xu B, Maser RS, Lin J, Petrini JH et al. (2000). ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature404: 613–617. ArticleCASPubMed Google Scholar
Nakanishi K, Yang YG, Pierce AJ, Taniguchi T, Digweed M, D’Andrea AD et al. (2005). Human Fanconi anemia monoubiquitination pathway promotes homologous DNA repair. Proc Natl Acad Sci USA102: 1110–1115. ArticleCASPubMedPubMed Central Google Scholar
Pierce AJ, Johnson RD, Thompson LH, Jasin M . (1999). XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev13: 2633–2638. ArticleCASPubMedPubMed Central Google Scholar
Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ et al. (2004). A pathway of double-strand break rejoining dependent upon ATM, artemis, and proteins locating to gamma-H2AX foci. Mol Cell16: 715–724. ArticleCASPubMed Google Scholar
Shiloh Y . (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer3: 155–168. ArticleCASPubMed Google Scholar
Takao N, Kato H, Mori R, Morrison C, Sonada E, Sun X et al. (1999). Disruption of ATM in p53-null cells causes multiple functional abnormalities in cellular response to ionizing radiation. Oncogene18: 7002–7009. ArticleCASPubMed Google Scholar
Tauchi H, Kobayashi J, Morishima K, Matsuura S, Nakamura A, Shiraishi T et al. (2001). The forkhead-associated domain of NBS1 is essential for nuclear foci formation after irradiation but not essential for hRAD50-hMRE11-NBS1 complex DNA repair activity. J Biol Chem276: 12–15. ArticleCASPubMed Google Scholar
Tauchi H, Kobayashi J, Morishima K, van Gent DC, Shiraishi T, Verkaik NS et al. (2002). Nbs1 is essential for DNA repair by homologous recombination in higher vertebrate cells. Nature420: 93–98. ArticleCASPubMed Google Scholar
The International Nijmegen Breakage Syndrome Study Group (2000). Nijmegen breakage syndrome. Arch Dis Child82: 400–406. Article Google Scholar
Uziel T, Lernthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y . (2003). Requirement of the MRN complex for ATM activation by DNA damage. EMBO J22: 5612–5621. ArticleCASPubMedPubMed Central Google Scholar
Xie A, Puget N, Shim I, Odate S, Jarzyna I, Bassing CH et al. (2004). Control of sister chromatid recombination by histone H2AX. Mol Cell16: 1017–1025. ArticleCASPubMed Google Scholar
Yamamoto K, Hirano S, Ishiai M, Morishima K, Kitao H, Namikoshi K et al. (2005). Fanconi anemia protein FANCD2 promotes immunoglobulin gene conversion and DNA repair through a mechanism related to homologous recombination. Mol Cell Biol25: 34–43. ArticleCASPubMedPubMed Central Google Scholar
Zhao S, Renthal W, Lee EY . (2002). Functional analysis of FHA and BRCT domains of NBS1 in chromatin association and DNA damage responses. Nucleic Acids Res30: 4815–4822. ArticleCASPubMedPubMed Central Google Scholar