Fuel utilization by cells of the immune system | Proceedings of the Nutrition Society | Cambridge Core (original) (raw)

Abstract

An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

References

Ardawi, M. S. M. (1988). Glutamine and glucose metabolism in human peripheral lymphocytes. Metabolism 37, 99–103.CrossRefGoogle ScholarPubMed

Ardawi, M. S. M. & Newsholme, E. A. (1982). Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilisation pathways in lymphocytes of the rat. Biochemical Journal 208, 743–748.CrossRefGoogle ScholarPubMed

Ardawi, M. S. M. & Newsholme, E. A. (1983). Glutamine metabolism in lymphocytes of the rat. Biochemical Journal 212, 835–842.CrossRefGoogle ScholarPubMed

Ardawi, M. S. M. & Newsholme, E. A. (1984). Metabolism of ketone bodies, oleate and glucose in lymphocytes of the rat. Biochemical Journal 221, 255–260.CrossRefGoogle ScholarPubMed

Ardawi, M. S. M. & Newsholme, E. A. (1985). Metabolism in lymphocytes and its importance in the immune response. Essays in Biochemistry 21, 1–44.Google ScholarPubMed

Ashworth, L. A. E. & MacLennan, A. P. (1974). Comparison of L-asparaginases from Escherichia coli and Erwinia carotovora and immunosuppressants. Cancer Research 34, 1353–1359.Google ScholarPubMed

Askanazi, J., Carpentier, Y. A., Michelsen, C. B., Elwyn, D. H., Furst, P., Kantrowitz, L. R., Gump, F. E. & Kinney, J. M. (1980). Muscle and plasma amino acids following injury. Annals of Surgery 192, 78–85.CrossRefGoogle ScholarPubMed

Brambilla, G., Pardodi, S., Cavanna, M., Caraceni, C. E. & Baldini, L. (1970). The immunodepressive activity of E. coli L-asparaginase in some transplant systems. Cancer Research 30, 2665–2670.Google Scholar

Brand, K. (1985). Glutamine and glucose metabolism during thymocyte proliferation. Biochemical Journal 228, 353–361.CrossRefGoogle ScholarPubMed

Brand, K., Fekl, W., von Hintzenstern, J., Langer, K., Luppa, P. & Schoerner, C. (1989). Metabolism of glutamine in lymphocytes. Metabolism 8, 29–33.CrossRefGoogle Scholar

Bustos, R. & Sobrino, F. (1989). Control of fructose 2,6-biphosphate levels in rat macrophages by glucose and phorbol ester. FEBS Letters 251, 143–146.CrossRefGoogle ScholarPubMed

Buttke, T. M. (1984). Inhibition of lymphocyte proliferation by free fatty acids. Immunology 53, 235–242.Google ScholarPubMed

Calder, P. C., Bevan, S. J. & Newsholme, E. A. (1992). The inhibition of T-lymphocyte proliferation by fatty acids is via an eicosanoid-independent mechanism. Immunology 75, 108–115.Google ScholarPubMed

Calder, P. C., Bond, J. A., Bevan, S. J., Hunt, S. V. & Newsholme, E. A. (1991). Effect of fatty acids on the proliferation of concanavalin A-stimulated rat lymph node lymphocytes. International Journal of Biochemistry 23, 579–588.CrossRefGoogle ScholarPubMed

Calder, P. C., Bond, J. A., Harvey, D. J., Gordon, S. & Newsholme, E. A. (1990). Uptake and incorporation of saturated and unsaturated fatty acids into macrophage lipids and their effect upon macrophage adhesion and phagocytosis. Biochemical Journal 269, 807–814.CrossRefGoogle ScholarPubMed

Calder, P. C. & Newsholme, E. A. (1992 a). Glutamine promotes interleukin-2 production by concanavalin A-stimulated lymphocytes. Proceedings of the Nutrition Society 51, 105A.Google Scholar

Calder, P. C. & Newsholme, E. A. (1992 b). Polyunsaturated fatty acids suppress human peripheral blood lymphocyte proliferation and interleukin-2 production. Clinical Science 82, 695–700.CrossRefGoogle ScholarPubMed

Calder, P. C. & Newsholme, E. A. (1992 c). Unsaturated fatty acids suppress interleukin-2 production and transferrin receptor expression by concanavalin A-stimulated rat lymphocytes. Mediators of Inflammation 1, 107–112.CrossRefGoogle Scholar

Calder, P. C. & Newsholme, E. A. (1993). Influence of antioxidant vitamins on fatty acid inhibition of lymphocyte proliferation. Biochemistry and Molecular Biology International 29, 175–183.Google ScholarPubMed

Calder, P. C., Yaqoob, P., Harvey, D. J., Watts, A. & Newsholme, E. A. (1994 a). The incorporation of fatty acids by lymphocytes and the effect on fatty acid composition and membrane fluidity. Biochemical Journal 300, 509–518.CrossRefGoogle ScholarPubMed

Calder, P. C., Yaqoob, P. & Newsholme, E. A. (1994 b). Triacylglycerol metabolism by lymphocytes and the effect of triacylglycerols on lymphocyte proliferation. Biochemical Journal 298, 605–611.CrossRefGoogle ScholarPubMed

Castell, L. M., Powell, H., Parry-Billings, M. & Newsholme, E. A. (1993). The effect of surgery on plasma glutamine concentrations. Proceedings of the Nutrition Society 52, 70A.Google Scholar

Chait, A., Iverius, P.-H. & Brunzell, J. D. (1982). Lipoprotein lipase secretion by human monocyte-derived macrophages. Journal of Clinical Investigation 69, 490–493.CrossRefGoogle ScholarPubMed

Chakrabarty, A. K. & Friedman, H. (1970). L-Asparaginase-induced immunosuppression: effects on antibody-forming cells and serum titers. Science 167, 869–870.CrossRefGoogle ScholarPubMed

Curi, R., Newsholme, P. & Newsholme, E. A. (1986). Intracellular distribution of some enzymes of the glutamine utilisation pathway in rat lymphocytes. Biochemical and Biophysical Research Communications 138, 318–322.CrossRefGoogle ScholarPubMed

Curi, R., Williams, J. F. & Newsholme, E. A. (1989 a). Pyruvate metabolism by lymphocytes: Evidence for an additional ketogenic tissue. Biochemistry International 19, 755–767.Google ScholarPubMed

Curi, R., Williams, J. F. & Newsholme, E. A. (1989 b). Formation of ketone bodies by resting lymphocytes. International Journal of Biochemistry 21, 1133–1136.CrossRefGoogle ScholarPubMed

Deutz, N. E. P., Reijven, P. L. M., Athanasas, G. & Soeters, P. B. (1992). Post-operative changes in hepatic, intestinal, splenic and muscle fluxes of amino acids and ammonia in pigs. Clinical Science 83, 607–614.CrossRefGoogle ScholarPubMed

Durden, D. L. & Distasio, J. A. (1981). Characterisation of the effects of asparaginase from Escherichia coli and a glutaminase-free asparaginase from Vibrio succinogenes on specific cell-mediated cytotoxicity. International Journal of Cancer 27, 59–65.CrossRefGoogle Scholar

Endres, S., Ghorbani, R., Kelley, V. E., Georgilis, K., Lonnemann, G., Van Der Meer, J. M. W., Cannon, J. G., Rogers, T. S., Klempner, M. S., Weber, P. C., Schaeffer, E. J., Wolff, S. M. & Dinarello, C. A. (1989). The effect of dietary supplementation with _n_-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells. New England Journal of Medicine 320, 265–271.CrossRefGoogle ScholarPubMed

Fujikawa, M., Yamashita, N., Yamazaki, K., Sugiyama, E., Suzuki, H. & Hamazaki, T. (1992). Eicosapent-aenoic acid inhibits antigen-presenting cell function of murine splenocytes. Immunology 75, 330–335.Google ScholarPubMed

Goldberg, D. I. & Khoo, J. C. (1990). Secretion of the lysosomal acid triacylglycerol hydrolase precursor by J774 macrophages. Biochimica et Biophysica Acta 960, 200–209.CrossRefGoogle Scholar

Griffiths, M. & Keast, D. (1990). The effect of glutamine on murine splenic leukocyte responses to T and B cell mitogens. Immunology and Cell Biology 68, 405–408.CrossRefGoogle ScholarPubMed

Hersh, E. M. (1970). L-Glutaminase: suppression of lymphocyte blastogenic responses in vitro. Science 172, 736–738.CrossRefGoogle Scholar

Hersh, E. M. & Brown, B. W. (1971). Inhibition of immune response by glutamine antagonism: effect of azotomycin on lymphocyte blastogenesis. Cancer Research 31, 834–840.Google ScholarPubMed

Hume, D. A., Radik, J. L., Ferber, E. & Weidemann, M. J. (1978). Aerobic glycolysis and lymphocyte transformation. Biochemical Journal 174, 703–709.CrossRefGoogle ScholarPubMed

Hwang, D. (1989). Essential fatty acids and the immune response. FASEB Journal 2, 2053–2061.Google Scholar

Kafkewitz, D. & Bendich, A. (1983). Enzyme-induced asparagine and glutamine depletion and immune system dysfunction. American Journal of Clinical Nutrition 37, 1025–1030.CrossRefGoogle Scholar

Karnovsky, M. L., Simmons, S., Glass, E. A., Shafer, A. W. & D'Arcy Hart, P. (1970). Metabolism of macrophages. In Mononuclear Phagocytes, pp. 103–120 [van Furth, R., editor]. Oxford: Blackwell Scientific Publications.Google Scholar

Keast, D. & Newsholme, E. A. (1990). Effect of mitogens on the maximum activities of hexokinase, lactate dehydrogenase, citrate synthase and glutaminase in rat mesenteric lymph node lymphocytes and splenocytes during the early period of culture. International Journal of Biochemistry 22, 133–136.CrossRefGoogle ScholarPubMed

Khoo, J. C., Mahoney, E. M. & Witztum, J. L. (1981). Secretion of lipoprotein lipase by macrophages in culture. Journal of Biological Chemistry 256, 7105–7108.CrossRefGoogle ScholarPubMed

Lengle, E. E., Gustin, N. C., Gonzalez, F., Menahan, L. A. & Kemp, R. G. (1978). Energy metabolism in thymic lymphocytes of normal and leukemic AKR mice. Cancer Research 38, 1113–1119.Google Scholar

Lokesh, B. R. & Wrann, M. (1984). Incorporation of palmitic acid or oleic acid into macrophage membrane lipids exerts differential effects on the function of normal mouse peritoneal macrophages. Biochimica et Biophysica Acta 792, 141–148.CrossRefGoogle ScholarPubMed

Lund, J., Stjernstrom, H., Bergholm, U., Jorfeldt, L., Vinnars, E. & Wiklund, L. (1986). The exchange of blood-borne amino acids in the leg during abdominal surgical trauma: effects of glucose infusion. Clinical Science 71, 487–496.CrossRefGoogle ScholarPubMed

McKeehan, W. L. (1982). Glycolysis, glutaminolysis and cell proliferation. Cell Biology International Reports 6, 635–650.CrossRefGoogle ScholarPubMed

Mahoney, E. M., Hamill, A. L., Scott, W. A. & Cohn, Z. A. (1977). Response of endocytosis to altered fatty acyl composition of macrophage phospholipids. Proceedings of the National Academy of Sciences USA 74, 4895–4899.CrossRefGoogle ScholarPubMed

Mahoney, E. M., Khoo, J. C. & Steinberg, D. (1982). Lipoprotein lipase secretion by human monocytes and rabbit alveolar macrophages in culture. Proceedings of the National Academy of Sciences USA 79, 1639–1642.CrossRefGoogle ScholarPubMed

Meydani, S. N., Endres, S., Woods, M. M., Goldin, B. R., Soo, C., Morrill-Labrode, A., Dinarello, C. & Gorbach, S. L. (1991). Oral (_n_-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: comparison between young and older women. Journal of Nutrition 121, 547–555.CrossRefGoogle Scholar

Newsholme, E. A., Crabtree, B. & Ardawi, M. S. M. (1985). The role of high rates of glycolysis and glutamine utilisation in rapidly dividing cells. Bioscience Reports 5, 393–400.CrossRefGoogle ScholarPubMed

Newsholme, E. A., Newsholme, P., Curi, R., Crabtree, B. & Ardawi, M. S. M. (1989). Glutamine metabolism in different tissues – Its physiological and pathological importance. In Perspectives in Clinical Nutrition, pp. 71–98 [Kinney, J. M. and Borum, P. R., editors]. Baltimore: Urban & Schwarzenberg.Google Scholar

Newsholme, P., Curi, R., Gordon, S. & Newsholme, E. A. (1986). Metabolism of glucose, glutamine, long-chain fatty acids and ketone bodies by murine macrophages. Biochemical Journal 239, 121–125.CrossRefGoogle ScholarPubMed

Newsholme, P., Gordon, S. & Newsholme, E. A. (1987). Rates of utilisation and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages. Biochemical Journal 242, 631–636.CrossRefGoogle ScholarPubMed

Newsholme, P. & Newsholme, E. A. (1989). Rates of utilisation of glucose, glutamine and oleate and formation of end products by mouse peritoneal macrophages in culture. Biochemical Journal 261, 211–218.CrossRefGoogle ScholarPubMed

O'Rourke, A. M. & Rider, L. C. (1989). Glucose, glutamine and ketone body utilisation by resting and concanavalin A activated rat splenic lymphocytes. Biochimica et Biophysica Acta 1010, 342–345.CrossRefGoogle ScholarPubMed

Parry-Billings, M., Baigrie, R. J., Lamont, P. M., Morris, P. J. & Newsholme, E. A. (1992 a). Effects of major and minor surgery on plasma glutamine and cytokine levels. Archives of Surgery 127, 1237–1240.CrossRefGoogle ScholarPubMed

Parry-Billings, M., Budgett, R., Koutedakis, Y., Blomstrand, E., Brooks, S., Williams, C., Calder, P. C., Pilling, S., Baigrie, R. & Newsholme, E. A. (1992 b). Plasma amino acid concentrations in the overtraining syndrome: possible effects on the immune system. Medicine and Science in Sports and Exercise 24, 1353–1358.CrossRefGoogle ScholarPubMed

Parry-Billings, M., Evans, J., Calder, P. C. & Newsholme, E. A. (1990). Does glutamine contribute to immunosuppression after major burns? Lancet 336, 523–525.CrossRefGoogle ScholarPubMed

Parry-Billings, M., Matthews, V. J., Newsholme, E. A., Budgett, R. & Koutedakis, J. (1993). The overtraining syndrome: some biochemical aspects. In Intermittent High Intensity Exercise, pp. 215–225 [MacLeod, D. A. D., Maughan, R. J., Williams, C., Madeley, C. R., Sharp, J. C. M. and Nutton, R. W., editors]. London: E. & F. N. Spon.Google Scholar

Roos, D. & Loos, J. A. (1973). Changes in the carbohydrate metabolism of mitogenically stimulated human peripheral lymphocytes. Experimental Cell Research 77, 127–135.CrossRefGoogle ScholarPubMed

Roth, E., Funovics, J., Muhlbacher, F., Schemper, M., Mauritz, W., Sporn, P. & Fritsch, A. (1982). Metabolic disorders in severe abdominal sepsis: glutamine deficiency in skeletal muscle. Clinical Nutrition 1, 25–41.CrossRefGoogle ScholarPubMed

Santoli, D., Phillips, P. D., Colt, T. L. & Zurier, R. B. (1990). Suppression of interleukin 2-dependent human T cell growth in vitro by prostaglandin E (PGE) and their precursor fatty acids. Journal of Clinical Investigation 85, 424–432.CrossRefGoogle Scholar

Simberkoff, M. S. & Thomas, L. (1970). Reversal by L-glutamine of the inhibition of lymphocyte mitosis caused by E. coli asparaginase. Proceedings of the Society of Experimental Biology 133, 642–643.CrossRefGoogle ScholarPubMed

Small, C. A., Rogers, M. P., Goodacre, J. A. & Yeaman, S. J. (1991). Phosphorylation and activation of hormone sensitive lipase in isolated macrophages. FEBS Letters 279, 323–326.CrossRefGoogle ScholarPubMed

Soyland, E., Nenseter, M. S., Braathen, L. & Drevon, C. A. (1993). Very long chain _n_-3 and _n_-6 polyunsaturated fatty acids inhibit proliferation of human T-lymphocytes in vitro. European Journal of Clinical Investigation 23, 112–121.CrossRefGoogle ScholarPubMed

Spolarics, Z., Lang, C. H., Bagby, G. J. & Spitzer, J. J. (1991). Glutamine and fatty acid oxidation are the main sources of energy in Kupffer and endothelial cells. American Journal of Physiology 261, G185–G190.Google ScholarPubMed

Stray, N., Letnes, H. & Blomhoff, J. P. (1990). Intracellular regulation of lipoprotein lipase in human monocyte-derived macrophages. Biochimica et Biophysica Acta 1045, 280–284.CrossRefGoogle ScholarPubMed

Szondy, Z. & Newsholme, E. A. (1989). The effect of glutamine concentration on the activity of carbamoyl-phosphate synthase II and on the incorporation of [3H]thymidine into DNA in rat mesenteric lymphocytes stimulated by phytohaemagglutinin. Biochemical Journal 261, 979–983.CrossRefGoogle ScholarPubMed

Tsang, W. M., Weyman, C. & Smith, A. D. (1977). Effect of fatty acid mixtures on phytohaemagglutinin-stimulated lymphocytes from different species. Biochemical Society Transactions 5, 153–154.CrossRefGoogle ScholarPubMed

Watson, J., Madhok, R., Wijelath, E., Capell, H. A., Gillespie, J., Smith, J. & Byars, B. L. (1990). Mechanism of action of polyunsaturated fatty acids in rheumatoid arthritis. Biochemical Society Transactions 18, 284–285.CrossRefGoogle ScholarPubMed

Weyman, C., Morgan, S. J., Belin, J. & Smith, A. D. (1977). Phytohaemagglutinin stimulation of human lymphocytes: effect of fatty acids on uridine uptake and phosphoglyceride fatty acid profile. Biochimica et Biophysica Acta 496, 155–166.CrossRefGoogle ScholarPubMed

Wu, G., Field, C. J. & Marliss, E. B. (1991). Elevated glutamine metabolism in splenocytes from spontaneously diabetic BB rats. Biochemical Journal 274, 49–54.CrossRefGoogle ScholarPubMed

Yamashita, N., Maruyama, M., Yamazaki, K., Hamazaki, T. & Yano, S. (1991). Effect of eicosapentaenoic and docosahexaenoic acid on natural killer cell activity in human peripheral blood lymphocytes. Clinical Immunology and Immunopathology 59, 335–345.CrossRefGoogle ScholarPubMed

Yaqoob, P. (1993). The effects of fatty acids on the composition and functions of lymphocytes. DPhil Thesis, University of Oxford.Google Scholar

Yaqoob, P. & Calder, P. C. (1993). The effects of fatty acids on lymphocyte functions. International Journal of Biochemistry 25, 1705–1714.CrossRefGoogle ScholarPubMed

Yaqoob, P., Newsholme, E. A. & Calder, P. C. (1994 a). Fatty acid oxidation by lymphocytes. Biochemical Society Transactions 22, 116S.CrossRefGoogle ScholarPubMed

Yaqoob, P., Newsholme, E. A. & Calder, P. C. (1994 b). The effect of dietary lipid manipulation on rat lymphocyte subsets and proliferation. Immunology 82, 603–610.Google ScholarPubMed

Yaqoob, P., Newsholme, E. A. & Calder, P. C. (1994 c). Inhibition of natural killer cell activity by dietary lipids. Immunology Letters 41, 241–247.CrossRefGoogle ScholarPubMed