Downstream molecular pathways of FLT3 in the pathogenesis of acute myeloid leukemia: biology and therapeutic implications (original) (raw)

References

  1. Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T, Sonoda Y, Abe T, Kahsima K, Matsuo Y, Naoe T: Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia. 1997, 11: 1605-1609. 10.1038/sj.leu.2400812.
    CAS PubMed Google Scholar
  2. Gilliland DG, Griffin JD: The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002, 100: 1532-1542. 10.1182/blood-2002-02-0492.
    CAS PubMed Google Scholar
  3. Kelly LM, Kutok JL, Williams IR, Boulton CL, Amaral SM, Curley DP, Ley TJ, Gilliland DG: PML/RARalpha and FLT3-ITD induce an APL-like disease in a mouse model. Proc Natl Acad Sci USA. 2002, 99: 8283-8288. 10.1073/pnas.122233699.
    PubMed Central CAS PubMed Google Scholar
  4. Noguera NI, Breccia M, Divona M, Diverio D, Costa V, De Santis S, Avvisati G, Pinazzi MB, Petti MC, Mandelli F, Lo Coco F: Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia. 2002, 16: 2185-2189. 10.1038/sj.leu.2402723.
    CAS PubMed Google Scholar
  5. Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, La Starza R, Diverio D, Colombo E, Santucci A: Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005, 352: 254-266. 10.1056/NEJMoa041974.
    CAS PubMed Google Scholar
  6. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J: DNMT3A Mutations in Acute Myeloid Leukemia. N Engl J Med. 2010, 363: 2424-2433. 10.1056/NEJMoa1005143.
    PubMed Central CAS PubMed Google Scholar
  7. Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, Bernstein ID, Radich JP: Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood. 2001, 97: 89-94. 10.1182/blood.V97.1.89.
    CAS PubMed Google Scholar
  8. Taketani T, Taki T, Sugita K, Furuichi Y, Ishii E, Hanada R, Tsuchida M, Ida K, Hayashi Y: FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood. 2004, 103: 1085-1088. 10.1182/blood-2003-02-0418.
    CAS PubMed Google Scholar
  9. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C: Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001, 97: 2434-2439. 10.1182/blood.V97.8.2434.
    CAS PubMed Google Scholar
  10. Markovic A, MacKenzie KL, Lock RB: FLT-3: a new focus in the understanding of acute leukemia. Int J Biochem Cell Biol. 2005, 37: 1168-1172. 10.1016/j.biocel.2004.12.005.
    CAS PubMed Google Scholar
  11. Stirewalt DL, Radich JP: The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer. 2003, 3: 650-665. 10.1038/nrc1169.
    CAS PubMed Google Scholar
  12. Rosnet O, Schiff C, Pebusque MJ, Marchetto S, Tonnelle C, Toiron Y, Birg F, Birnbaum D: Human FLT3/FLK2 gene: cDNA cloning and expression in hematopoietic cells. Blood. 1993, 82: 1110-1119.
    CAS PubMed Google Scholar
  13. Lyman SD, James L, Vanden Bos T, de Vries P, Brasel K, Gliniak B, Hollingsworth LT, Picha KS, McKenna HJ, Splett RR: Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell. 1993, 75: 1157-1167. 10.1016/0092-8674(93)90325-K.
    CAS PubMed Google Scholar
  14. Lyman SD, James L, Johnson L, Brasel K, de Vries P, Escobar SS, Downey H, Splett RR, Beckmann MP, McKenna HJ: Cloning of the human homologue of the murine flt3 ligand: a growth factor for early hematopoietic progenitor cells. Blood. 1994, 83: 2795-2801.
    CAS PubMed Google Scholar
  15. Lyman SD, Jacobsen SE: c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood. 1998, 91: 1101-1134.
    CAS PubMed Google Scholar
  16. Brasel K, Escobar S, Anderberg R, de Vries P, Gruss HJ, Lyman SD: Expression of the flt3 receptor and its ligand on hematopoietic cells. Leukemia. 1995, 9: 1212-1218.
    CAS PubMed Google Scholar
  17. Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K, Sonoda Y, Fujimoto T, Misawa S: Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996, 10: 1911-1918.
    CAS PubMed Google Scholar
  18. Schnittger S, Schoch C, Dugas M, Kern W, Staib P, Wuchter C, Loffler H, Sauerland CM, Serve H, Buchner T: Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood. 2002, 100: 59-66. 10.1182/blood.V100.1.59.
    CAS PubMed Google Scholar
  19. Xu F, Taki T, Yang HW, Hanada R, Hongo T, Ohnishi H, Kobayashi M, Bessho F, Yanagisawa M, Hayashi Y: Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br J Haematol. 1999, 105: 155-162. 10.1111/j.1365-2141.1999.01284.x.
    CAS PubMed Google Scholar
  20. Nakao M, Janssen JW, Erz D, Seriu T, Bartram CR: Tandem duplication of the FLT3 gene in acute lymphoblastic leukemia: a marker for the monitoring of minimal residual disease. Leukemia. 2000, 14: 522-524. 10.1038/sj.leu.2401695.
    CAS PubMed Google Scholar
  21. Xu B, Tian H, Zhou SY: Detection of FLT3 gene and FLT3/ITD gene mutation in chronic myeloid leukemia and its significance. Ai Zheng. 2004, 23: 1218-1221.
    CAS PubMed Google Scholar
  22. Ishii E, Zaitsu M, Ihara K, Hara T, Miyazaki S: High expression but no internal tandem duplication of FLT3 in normal hematopoietic cells. Pediatr Hematol Oncol. 1999, 16: 437-441. 10.1080/088800199276994.
    CAS PubMed Google Scholar
  23. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, Walker H, Wheatley K, Bowen DT, Burnett AK: The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001, 98: 1752-1759. 10.1182/blood.V98.6.1752.
    CAS PubMed Google Scholar
  24. Kondo M, Horibe K, Takahashi Y, Matsumoto K, Fukuda M, Inaba J, Kato K, Kojima S, Matsuyama T: Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol. 1999, 33: 525-529. 10.1002/(SICI)1096-911X(199912)33:6<525::AID-MPO1>3.0.CO;2-8.
    CAS PubMed Google Scholar
  25. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S, Asou N, Kuriyama K, Jinnai I, Shimazaki C: Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood. 1999, 93: 3074-3080.
    CAS PubMed Google Scholar
  26. Frohling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K, Dohner H, Dohner K: Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood. 2002, 100: 4372-4380. 10.1182/blood-2002-05-1440.
    CAS PubMed Google Scholar
  27. Thiede C, Steudel C, Mohr B, Schaich M, Schakel U, Platzbecker U, Wermke M, Bornhauser M, Ritter M, Neubauer A: Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002, 99: 4326-4335. 10.1182/blood.V99.12.4326.
    CAS PubMed Google Scholar
  28. Kuchenbauer F, Kern W, Schoch C, Kohlmann A, Hiddemann W, Haferlach T, Schnittger S: Detailed analysis of FLT3 expression levels in acute myeloid leukemia. Haematologica. 2005, 90: 1617-1625.
    CAS PubMed Google Scholar
  29. Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M, Ehninger G: Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood. 2006, 107: 4011-4020. 10.1182/blood-2005-08-3167.
    CAS PubMed Google Scholar
  30. Frohling S, Scholl C, Gilliland DG, Levine RL: Genetics of myeloid malignancies: pathogenetic and clinical implications. J Clin Oncol. 2005, 23: 6285-6295. 10.1200/JCO.2005.05.010.
    CAS PubMed Google Scholar
  31. Kelly LM, Gilliland DG: Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet. 2002, 3: 179-198. 10.1146/annurev.genom.3.032802.115046.
    CAS PubMed Google Scholar
  32. Hou HA, Chou WC, Lin LI, Chen CY, Tang JL, Tseng MH, Huang CF, Chiou RJ, Lee FY, Liu MC, Tien HF: Characterization of acute myeloid leukemia with PTPN11 mutation: the mutation is closely associated with NPM1 mutation but inversely related to FLT3/ITD. Leukemia. 2008, 22: 1075-1078. 10.1038/sj.leu.2405005.
    CAS PubMed Google Scholar
  33. Beitinjaneh A, Jang S, Roukoz H, Majhail NS: Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations in acute promyelocytic leukemia: a systematic review. Leuk Res. 2010, 34: 831-836. 10.1016/j.leukres.2010.01.001.
    CAS PubMed Google Scholar
  34. Oyarzo MP, Lin P, Glassman A, Bueso-Ramos CE, Luthra R, Medeiros LJ: Acute myeloid leukemia with t(6;9)(p23;q34) is associated with dysplasia and a high frequency of flt3 gene mutations. Am J Clin Pathol. 2004, 122: 348-358. 10.1309/5DGB59KQA527PD47.
    CAS PubMed Google Scholar
  35. Steudel C, Wermke M, Schaich M, Schakel U, Illmer T, Ehninger G, Thiede C: Comparative analysis of MLL partial tandem duplication and FLT3 internal tandem duplication mutations in 956 adult patients with acute myeloid leukemia. Genes Chromosomes Cancer. 2003, 37: 237-251. 10.1002/gcc.10219.
    CAS PubMed Google Scholar
  36. Carnicer MJ, Nomdedeu JF, Lasa A, Estivill C, Brunet S, Aventin A, Sierra J: FLT3 mutations are associated with other molecular lesions in AML. Leuk Res. 2004, 28: 19-23. 10.1016/S0145-2126(03)00125-5.
    CAS PubMed Google Scholar
  37. Ishikawa Y, Kiyoi H, Tsujimura A, Miyawaki S, Miyazaki Y, Kuriyama K, Tomonaga M, Naoe T: Comprehensive analysis of cooperative gene mutations between class I and class II in de novo acute myeloid leukemia. Eur J Haematol. 2009, 83: 90-98. 10.1111/j.1600-0609.2009.01261.x.
    CAS PubMed Google Scholar
  38. Dosil M, Wang S, Lemischka IR: Mitogenic signalling and substrate specificity of the Flk2/Flt3 receptor tyrosine kinase in fibroblasts and interleukin 3-dependent hematopoietic cells. Mol Cell Biol. 1993, 13: 6572-6585.
    PubMed Central CAS PubMed Google Scholar
  39. Takahashi S: Inhibition of the MEK/MAPK signal transduction pathway strongly impairs the growth of Flt3-ITD cells. Am J Hematol. 2006, 81: 154-155. 10.1002/ajh.20520.
    PubMed Google Scholar
  40. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H, Naoe T: Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene. 2000, 19: 624-631. 10.1038/sj.onc.1203354.
    CAS PubMed Google Scholar
  41. Bruserud O, Hovland R, Wergeland L, Huang TS, Gjertsen BT: Flt3-mediated signaling in human acute myelogenous leukemia (AML) blasts: a functional characterization of Flt3-ligand effects in AML cell populations with and without genetic Flt3 abnormalities. Haematologica. 2003, 88: 416-428.
    CAS PubMed Google Scholar
  42. Choudhary C, Schwable J, Brandts C, Tickenbrock L, Sargin B, Kindler T, Fischer T, Berdel WE, Muller-Tidow C, Serve H: AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood. 2005, 106: 265-273. 10.1182/blood-2004-07-2942.
    CAS PubMed Google Scholar
  43. Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B, Steffen B, Matsumura I, Kanakura Y, Bohmer FD: Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood. 2003, 101: 3164-3173. 10.1182/blood-2002-06-1677.
    CAS PubMed Google Scholar
  44. Grundler R, Miething C, Thiede C, Peschel C, Duyster J: FLT3-ITD and tyrosine kinase domain mutants induce 2 distinct phenotypes in a murine bone marrow transplantation model. Blood. 2005, 105: 4792-4799. 10.1182/blood-2004-11-4430.
    CAS PubMed Google Scholar
  45. Calo V, Migliavacca M, Bazan V, Macaluso M, Buscemi M, Gebbia N, Russo A: STAT proteins: from normal control of cellular events to tumorigenesis. J Cell Physiol. 2003, 197: 157-168. 10.1002/jcp.10364.
    CAS PubMed Google Scholar
  46. Takahashi S, Harigae H, Kaku M, Sasaki T, Licht JD: Flt3 mutation activates p21(WAF1/CIP1) gene expression through the action of STAT5. Biochem Biophys Res Commun. 2004, 316: 85-92. 10.1016/j.bbrc.2004.02.018.
    CAS PubMed Google Scholar
  47. Takahashi S, McConnell MJ, Harigae H, Kaku M, Sasaki T, Melnick AM, Licht JD: The Flt3 internal tandem duplication mutant inhibits the function of transcriptional repressors by blocking interactions with SMRT. Blood. 2004, 103: 4650-4658. 10.1182/blood-2003-08-2759.
    CAS PubMed Google Scholar
  48. Kim KT, Baird K, Ahn JY, Meltzer P, Lilly M, Levis M, Small D: Pim-1 is upregulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival. Blood. 2004, 21: 21-
    Google Scholar
  49. Sallmyr A, Fan J, Datta K, Kim KT, Grosu D, Shapiro P, Small D, Rassool F: Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood. 2008, 111: 3173-3182. 10.1182/blood-2007-05-092510.
    CAS PubMed Google Scholar
  50. Fan J, Li L, Small D, Rassool F: Cells expressing FLT3/ITD mutations exhibit elevated repair errors generated through alternative NHEJ pathways: implications for genomic instability and therapy. Blood. 2010, 116: 5298-5305. 10.1182/blood-2010-03-272591.
    PubMed Central CAS PubMed Google Scholar
  51. Zheng R, Levis M, Piloto O, Brown P, Baldwin BR, Gorin NC, Beran M, Zhu Z, Ludwig D, Hicklin D: FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood. 2004, 103: 267-274. 10.1182/blood-2003-06-1969.
    CAS PubMed Google Scholar
  52. Ozeki K, Kiyoi H, Hirose Y, Iwai M, Ninomiya M, Kodera Y, Miyawaki S, Kuriyama K, Shimazaki C, Akiyama H: Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood. 2004, 103: 1901-1908. 10.1182/blood-2003-06-1845.
    CAS PubMed Google Scholar
  53. Lemmon MA, Schlessinger J: Cell signaling by receptor tyrosine kinases. Cell. 2010, 141: 1117-1134. 10.1016/j.cell.2010.06.011.
    PubMed Central CAS PubMed Google Scholar
  54. Scheijen B, Ngo HT, Kang H, Griffin JD: FLT3 receptors with internal tandem duplications promote cell viability and proliferation by signaling through Foxo proteins. Oncogene. 2004, 23: 3338-3349. 10.1038/sj.onc.1207456.
    CAS PubMed Google Scholar
  55. Zheng R, Friedman AD, Levis M, Li L, Weir EG, Small D: Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression. Blood. 2004, 103: 1883-1890. 10.1182/blood-2003-06-1978.
    CAS PubMed Google Scholar
  56. Radomska HS, Basseres DS, Zheng R, Zhang P, Dayaram T, Yamamoto Y, Sternberg DW, Lokker N, Giese NA, Bohlander SK: Block of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med. 2006, 203: 371-381. 10.1084/jem.20052242.
    PubMed Central CAS PubMed Google Scholar
  57. Rosenbauer F, Wagner K, Kutok JL, Iwasaki H, Le Beau MM, Okuno Y, Akashi K, Fiering S, Tenen DG: Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet. 2004, 36: 624-630. 10.1038/ng1361.
    CAS PubMed Google Scholar
  58. Inomata M, Takahashi S, Harigae H, Kameoka J, Kaku M, Sasaki T: Inverse correlation between Flt3 and PU.1 expression in acute myeloblastic leukemias. Leuk Res. 2006, 30: 659-664. 10.1016/j.leukres.2005.07.015.
    CAS PubMed Google Scholar
  59. Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA: Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol. 1998, 18: 7185-7191.
    PubMed Central CAS PubMed Google Scholar
  60. Takahashi S, Harigae H, Kameoka J, Sasaki T, Kaku M: AML1B transcriptional repressor function is impaired by the Flt3 internal tandem duplication. Br J Haematol. 2005, 130: 428-436. 10.1111/j.1365-2141.2005.05621.x.
    CAS PubMed Google Scholar
  61. Chen SJ, Zelent A, Tong JH, Yu HQ, Wang ZY, Derre J, Berger R, Waxman S, Chen Z: Rearrangements of the retinoic acid receptor alpha and promyelocytic leukemia zinc finger genes resulting from t(11;17)(q23;q21) in a patient with acute promyelocytic leukemia. J Clin Invest. 1993, 91: 2260-2267. 10.1172/JCI116453.
    PubMed Central CAS PubMed Google Scholar
  62. Takahashi S, Licht JD: The human promyelocytic leukemia zinc finger gene is regulated by the Evi-1 oncoprotein and a novel guanine-rich site binding protein. Leukemia. 2002, 16: 1755-1762. 10.1038/sj.leu.2402682.
    CAS PubMed Google Scholar
  63. Reid A, Gould A, Brand N, Cook M, Strutt P, Li J, Licht J, Waxman S, Krumlauf R, Zelent A: Leukemia translocation gene, PLZF, is expressed with a speckled nuclear pattern in early hematopoietic progenitors. Blood. 1995, 86: 4544-4552.
    CAS PubMed Google Scholar
  64. Yeyati PL, Shaknovich R, Boterashvili S, Li J, Ball HJ, Waxman S, Nason-Burchenal K, Dmitrovsky E, Zelent A, Licht JD: Leukemia translocation protein PLZF inhibits cell growth and expression of cyclin A. Oncogene. 1999, 18: 925-934. 10.1038/sj.onc.1202375.
    CAS PubMed Google Scholar
  65. Shaknovich R, Yeyati PL, Ivins S, Melnick A, Lempert C, Waxman S, Zelent A, Licht JD: The promyelocytic leukemia zinc finger protein affects myeloid cell growth, differentiation, and apoptosis. Mol Cell Biol. 1998, 18: 5533-5545.
    PubMed Central CAS PubMed Google Scholar
  66. Yamagata T, Maki K, Mitani K: Runx1/AML1 in normal and abnormal hematopoiesis. Int J Hematol. 2005, 82: 1-8. 10.1532/IJH97.05075.
    CAS PubMed Google Scholar
  67. Wolyniec K, Wotton S, Kilbey A, Jenkins A, Terry A, Peters G, Stocking C, Cameron E, Neil JC: RUNX1 and its fusion oncoprotein derivative, RUNX1-ETO, induce senescence-like growth arrest independently of replicative stress. Oncogene. 2009, 28: 2502-2512. 10.1038/onc.2009.101.
    CAS PubMed Google Scholar
  68. Yan M, Burel SA, Peterson LF, Kanbe E, Iwasaki H, Boyapati A, Hines R, Akashi K, Zhang DE: Deletion of an AML1-ETO C-terminal NcoR/SMRT-interacting region strongly induces leukemia development. Proc Natl Acad Sci USA. 2004, 101: 17186-17191. 10.1073/pnas.0406702101.
    PubMed Central CAS PubMed Google Scholar
  69. Levis M, Small D: FLT3 tyrosine kinase inhibitors. Int J Hematol. 2005, 82: 100-107. 10.1532/IJH97.05079.
    CAS PubMed Google Scholar
  70. Levis M, Tse KF, Smith BD, Garrett E, Small D: A FLT3 tyrosine kinase inhibitor is selectively cytotoxic to acute myeloid leukemia blasts harboring FLT3 internal tandem duplication mutations. Blood. 2001, 98: 885-887. 10.1182/blood.V98.3.885.
    CAS PubMed Google Scholar
  71. Tse KF, Allebach J, Levis M, Smith BD, Bohmer FD, Small D: Inhibition of the transforming activity of FLT3 internal tandem duplication mutants from AML patients by a tyrosine kinase inhibitor. Leukemia. 2002, 16: 2027-2036. 10.1038/sj.leu.2402674.
    CAS PubMed Google Scholar
  72. Tse KF, Novelli E, Civin CI, Bohmer FD, Small D: Inhibition of FLT3-mediated transformation by use of a tyrosine kinase inhibitor. Leukemia. 2001, 15: 1001-1010. 10.1038/sj.leu.2402199.
    CAS PubMed Google Scholar
  73. Levis M, Allebach J, Tse KF, Zheng R, Baldwin BR, Smith BD, Jones-Bolin S, Ruggeri B, Dionne C, Small D: A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood. 2002, 99: 3885-3891. 10.1182/blood.V99.11.3885.
    CAS PubMed Google Scholar
  74. Teller S, Kramer D, Bohmer SA, Tse KF, Small D, Mahboobi S, Wallrapp C, Beckers T, Kratz-Albers K, Schwable J: Bis(1H-2-indolyl)-1-methanones as inhibitors of the hematopoietic tyrosine kinase Flt3. Leukemia. 2002, 16: 1528-1534. 10.1038/sj.leu.2402630.
    CAS PubMed Google Scholar
  75. Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T, Gilliland DG, Griffin JD: Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell. 2002, 1: 433-443. 10.1016/S1535-6108(02)00069-7.
    CAS PubMed Google Scholar
  76. Murata K, Kumagai H, Kawashima T, Tamitsu K, Irie M, Nakajima H, Suzu S, Shibuya M, Kamihira S, Nosaka T: Selective cytotoxic mechanism of GTP-14564, a novel tyrosine kinase inhibitor in leukemia cells expressing a constitutively active Fms-like tyrosine kinase 3 (FLT3). J Biol Chem. 2003, 278: 32892-32898. 10.1074/jbc.M210405200.
    CAS PubMed Google Scholar
  77. O'Farrell AM, Abrams TJ, Yuen HA, Ngai TJ, Louie SG, Yee KW, Wong LM, Hong W, Lee LB, Town A: SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood. 2003, 101: 3597-3605.
    PubMed Google Scholar
  78. Trudel S, Li ZH, Wei E, Wiesmann M, Chang H, Chen C, Reece D, Heise C, Stewart AK: CHIR-258, a novel, multitargeted tyrosine kinase inhibitor for the potential treatment of t(4;14) multiple myeloma. Blood. 2005, 105: 2941-2948. 10.1182/blood-2004-10-3913.
    CAS PubMed Google Scholar
  79. Komeno Y, Kurokawa M, Imai Y, Takeshita M, Matsumura T, Kubo K, Yoshino T, Nishiyama U, Kuwaki T, Kubo K: Identification of Ki23819, a highly potent inhibitor of kinase activity of mutant FLT3 receptor tyrosine kinase. Leukemia. 2005, 19: 930-935. 10.1038/sj.leu.2403736.
    CAS PubMed Google Scholar
  80. Gazit A, Yee K, Uecker A, Bohmer FD, Sjoblom T, Ostman A, Waltenberger J, Golomb G, Banai S, Heinrich MC, Levitzki A: Tricyclic quinoxalines as potent kinase inhibitors of PDGFR kinase, Flt3 and Kit. Bioorg Med Chem. 2003, 11: 2007-2018. 10.1016/S0968-0896(03)00048-8.
    CAS PubMed Google Scholar
  81. Spiekermann K, Dirschinger RJ, Schwab R, Bagrintseva K, Faber F, Buske C, Schnittger S, Kelly LM, Gilliland DG, Hiddemann W: The protein tyrosine kinase inhibitor SU5614 inhibits FLT3 and induces growth arrest and apoptosis in AML-derived cell lines expressing a constitutively activated FLT3. Blood. 2003, 101: 1494-1504. 10.1182/blood-2002-04-1045.
    CAS PubMed Google Scholar
  82. Scott E, Hexner E, Perl A, Carroll M: Targeted signal transduction therapies in myeloid malignancies. Curr Oncol Rep. 2010, 12: 358-365. 10.1007/s11912-010-0126-z.
    CAS PubMed Google Scholar
  83. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD, Grandin W, Lebwohl D, Wang Y, Cohen P: Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005, 105: 54-60. 10.1182/blood-2004-03-0891.
    CAS PubMed Google Scholar
  84. Fiedler W, Serve H, Dohner H, Schwittay M, Ottmann OG, O'Farrell AM, Bello CL, Allred R, Manning WC, Cherrington JM: A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood. 2005, 105: 986-993. 10.1182/blood-2004-05-1846.
    CAS PubMed Google Scholar
  85. Levis M, Ravandi F, Wang ES, Baer MR, Perl A, Coutre S, Erba H, Stuart RK, Baccarani M, Cripe LD: Results from a randomized trial of salvage chemotherapy followed by lestaurtinib for patients with FLT3 mutant AML in first relapse. Blood. 2011,
    Google Scholar
  86. Fischer T, Stone RM, Deangelo DJ, Galinsky I, Estey E, Lanza C, Fox E, Ehninger G, Feldman EJ, Schiller GJ: Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol. 2010, 28: 4339-4345. 10.1200/JCO.2010.28.9678.
    PubMed Central CAS PubMed Google Scholar
  87. Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B, Karaman MW, Pratz KW, Pallares G, Chao Q: AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood. 2009, 114: 2984-2992. 10.1182/blood-2009-05-222034.
    PubMed Central CAS PubMed Google Scholar
  88. Knapper S: FLT3 inhibition in acute myeloid leukaemia. Br J Haematol. 2007, 138: 687-699. 10.1111/j.1365-2141.2007.06700.x.
    CAS PubMed Google Scholar
  89. Wadleigh M, DeAngelo DJ, Griffin JD, Stone RM: After chronic myelogenous leukemia: tyrosine kinase inhibitors in other hematologic malignancies. Blood. 2005, 105: 22-30. 10.1182/blood-2003-11-3896.
    CAS PubMed Google Scholar
  90. Grundler R, Thiede C, Miething C, Steudel C, Peschel C, Duyster J: Sensitivity toward tyrosine kinase inhibitors varies between different activating mutations of the FLT3 receptor. Blood. 2003, 102: 646-651. 10.1182/blood-2002-11-3441.
    CAS PubMed Google Scholar
  91. Cools J, Mentens N, Furet P, Fabbro D, Clark JJ, Griffin JD, Marynen P, Gilliland DG: Prediction of resistance to small molecule FLT3 inhibitors: implications for molecularly targeted therapy of acute leukemia. Cancer Res. 2004, 64: 6385-6389. 10.1158/0008-5472.CAN-04-2148.
    CAS PubMed Google Scholar
  92. Heidel F, Solem FK, Breitenbuecher F, Lipka DB, Kasper S, Thiede MH, Brandts C, Serve H, Roesel J, Giles F: Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. Blood. 2006, 107: 293-300. 10.1182/blood-2005-06-2469.
    CAS PubMed Google Scholar
  93. Piloto O, Wright M, Brown P, Kim KT, Levis M, Small D: Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways. Blood. 2007, 109: 1643-1652. 10.1182/blood-2006-05-023804.
    PubMed Central CAS PubMed Google Scholar
  94. Levis M, Pham R, Smith BD, Small D: In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood. 2004, 104: 1145-1150. 10.1182/blood-2004-01-0388.
    CAS PubMed Google Scholar
  95. Yee KW, Schittenhelm M, O'Farrell AM, Town AR, McGreevey L, Bainbridge T, Cherrington JM, Heinrich MC: Synergistic effect of SU11248 with cytarabine or daunorubicin on FLT3 ITD-positive leukemic cells. Blood. 2004, 104: 4202-4209. 10.1182/blood-2003-10-3381.
    CAS PubMed Google Scholar
  96. Pratz K, Levis M: Incorporating FLT3 inhibitors into acute myeloid leukemia treatment regimens. Leuk Lymphoma. 2008, 49: 852-863. 10.1080/10428190801895352.
    PubMed Central CAS PubMed Google Scholar
  97. Miranda MB, McGuire TF, Johnson DE: Importance of MEK-1/-2 signaling in monocytic and granulocytic differentiation of myeloid cell lines. Leukemia. 2002, 16: 683-692. 10.1038/sj.leu.2402400.
    CAS PubMed Google Scholar
  98. Kelly LM, Liu Q, Kutok JL, Williams IR, Boulton CL, Gilliland DG: FLT3 internal tandem duplication mutations associated with human acute myeloid leukemias induce myeloproliferative disease in a murine bone marrow transplant model. Blood. 2002, 99: 310-318. 10.1182/blood.V99.1.310.
    CAS PubMed Google Scholar
  99. Milella M, Kornblau SM, Estrov Z, Carter BZ, Lapillonne H, Harris D, Konopleva M, Zhao S, Estey E, Andreeff M: Therapeutic targeting of the MEK/MAPK signal transduction module in acute myeloid leukemia. J Clin Invest. 2001, 108: 851-859.
    PubMed Central CAS PubMed Google Scholar
  100. Lunghi P, Costanzo A, Salvatore L, Noguera N, Mazzera L, Tabilio A, Lo-Coco F, Levrero M, Bonati A: MEK1 inhibition sensitizes primary acute myelogenous leukemia to arsenic trioxide-induced apoptosis. Blood. 2006
    Google Scholar
  101. Takahashi S, Harigae H, Yokoyama H, Ishikawa I, Abe S, Imaizumi M, Sasaki T, Kaku M: Synergistic effect of arsenic trioxide and flt3 inhibition on cells with flt3 internal tandem duplication. Int J Hematol. 2006, 84: 256-261. 10.1532/IJH97.06076.
    CAS PubMed Google Scholar
  102. Lowenberg B, Downing JR, Burnett A: Acute myeloid leukemia. N Engl J Med. 1999, 341: 1051-1062. 10.1056/NEJM199909303411407.
    CAS PubMed Google Scholar
  103. Douer D, Tallman MS: Arsenic trioxide: new clinical experience with an old medication in hematologic malignancies. J Clin Oncol. 2005, 23: 2396-2410. 10.1200/JCO.2005.10.217.
    CAS PubMed Google Scholar
  104. Takahashi S: Combination therapy with arsenic trioxide for hematological malignancies. Anticancer Agents Med Chem. 2010, 10: 504-510.
    CAS PubMed Google Scholar
  105. Minami Y, Kiyoi H, Yamamoto Y, Yamamoto K, Ueda R, Saito H, Naoe T: Selective apoptosis of tandemly duplicated FLT3-transformed leukemia cells by Hsp90 inhibitors. Leukemia. 2002, 16: 1535-1540. 10.1038/sj.leu.2402558.
    CAS PubMed Google Scholar
  106. Yao Q, Nishiuchi R, Li Q, Kumar AR, Hudson WA, Kersey JH: FLT3 expressing leukemias are selectively sensitive to inhibitors of the molecular chaperone heat shock protein 90 through destabilization of signal transduction-associated kinases. Clin Cancer Res. 2003, 9: 4483-4493.
    CAS PubMed Google Scholar
  107. George P, Bali P, Cohen P, Tao J, Guo F, Sigua C, Vishvanath A, Fiskus W, Scuto A, Annavarapu S: Cotreatment with 17-allylamino-demethoxygeldanamycin and FLT-3 kinase inhibitor PKC412 is highly effective against human acute myelogenous leukemia cells with mutant FLT-3. Cancer Res. 2004, 64: 3645-3652. 10.1158/0008-5472.CAN-04-0006.
    CAS PubMed Google Scholar
  108. Yao Q, Nishiuchi R, Kitamura T, Kersey JH: Human leukemias with mutated FLT3 kinase are synergistically sensitive to FLT3 and Hsp90 inhibitors: the key role of the STAT5 signal transduction pathway. Leukemia. 2005, 19: 1605-1612. 10.1038/sj.leu.2403881.
    CAS PubMed Google Scholar
  109. Fukuda S, Broxmeyer HE, Pelus LM: Flt3 ligand and the Flt3 receptor regulate hematopoietic cell migration by modulating the SDF-1alpha(CXCL12)/CXCR4 axis. Blood. 2005, 105: 3117-3126. 10.1182/blood-2004-04-1440.
    CAS PubMed Google Scholar
  110. Tavor S, Petit I, Porozov S, Avigdor A, Dar A, Leider-Trejo L, Shemtov N, Deutsch V, Naparstek E, Nagler A, Lapidot T: CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res. 2004, 64: 2817-2824. 10.1158/0008-5472.CAN-03-3693.
    CAS PubMed Google Scholar
  111. Rombouts EJ, Pavic B, Lowenberg B, Ploemacher RE: Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood. 2004, 104: 550-557. 10.1182/blood-2004-02-0566.
    CAS PubMed Google Scholar
  112. Nervi B, Ramirez P, Rettig MP, Uy GL, Holt MS, Ritchey JK, Prior JL, Piwnica-Worms D, Bridger G, Ley TJ, DiPersio JF: Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood. 2009, 113: 6206-6214. 10.1182/blood-2008-06-162123.
    PubMed Central CAS PubMed Google Scholar
  113. Juarez J, Dela Pena A, Baraz R, Hewson J, Khoo M, Cisterne A, Fricker S, Fujii N, Bradstock KF, Bendall LJ: CXCR4 antagonists mobilize childhood acute lymphoblastic leukemia cells into the peripheral blood and inhibit engraftment. Leukemia. 2007, 21: 1249-1257. 10.1038/sj.leu.2404684.
    CAS PubMed Google Scholar
  114. Zeng Z, Shi YX, Samudio IJ, Wang RY, Ling X, Frolova O, Levis M, Rubin JB, Negrin RR, Estey EH: Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood. 2009, 113: 6215-6224. 10.1182/blood-2008-05-158311.
    PubMed Central CAS PubMed Google Scholar

Download references