Role of ceramide in diabetes mellitus: evidence and mechanisms (original) (raw)
Alberti KG, Zimmet PZ: Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998, 15: 539-553. 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S ArticleCASPubMed Google Scholar
World health organization: Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. 2006, Geneva: WHO press. Google Scholar
Ohanian J, Ohanian V: Sphingolipids in mammalian cell signaling. Cell Mol Life Sci. 2001, 58: 2053-2068. 10.1007/PL00000836 ArticleCASPubMed Google Scholar
Kizhakkayil J, Thayyullathil F, Chathoth S, Hago A, Patel M, Galadari S: Glutathione regulates caspase-dependent ceramide production and curcumin-induced apoptosis in human leukemic cells. Free Radic Biol Med. 2012, 52: 1854-1864. 10.1016/j.freeradbiomed.2012.02.026 ArticleCASPubMed Google Scholar
Alewijnse AE, Peters SL: Sphingolipid signaling in the cardiovascular system: good, bad or both?. Eur J Pharmacol. 2008, 585: 292-302. 10.1016/j.ejphar.2008.02.089 ArticleCASPubMed Google Scholar
He X, Huang Y, Li B, Gong CX, Schuchman EH: Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol Aging. 2010, 31: 398-408. 10.1016/j.neurobiolaging.2008.05.010 ArticlePubMed CentralCASPubMed Google Scholar
White MF, Kahn CR: The insulin signaling system. J Biol Chem. 1994, 269: 1-4. CASPubMed Google Scholar
White MF: IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab. 2002, 283: E413-E422. ArticleCASPubMed Google Scholar
Keller SR, Lienhard GE: Insulin signalling: the role of insulin receptor substrate 1. Trends Cell Biol. 1994, 4: 115-119. 10.1016/0962-8924(94)90065-5 ArticleCASPubMed Google Scholar
Langeveld M, Aerts JM: Glycosphingolipids and insulin resistance. Prog Lipid Res. 2009, 48: 196-205. 10.1016/j.plipres.2009.03.002 ArticleCASPubMed Google Scholar
Chang L, Chiang SH, Saltiel AR: Insulin signaling and the regulation of glucose transport. Mol Med. 2004, 10: 65-71. PubMed CentralCASPubMed Google Scholar
Summers SA: Ceramides in insulin resistance and lipotoxicity. Prog Lipid Res. 2006, 45: 42-72. 10.1016/j.plipres.2005.11.002 ArticleCASPubMed Google Scholar
Schmitz-Peiffer C, Craig DL, Biden TJ: Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Che. 1999, 274: 24202-24210. 10.1074/jbc.274.34.24202. ArticleCAS Google Scholar
Hajduch E, Balendran A, Batty IH, Litherland GJ, Blair AS, Downes CP, Hundal HS: Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia. 2001, 44: 173-183. 10.1007/s001250051596 ArticleCASPubMed Google Scholar
Merrill AH: De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Biol Chem. 2002, 277: 25843-25846. 10.1074/jbc.R200009200 ArticleCASPubMed Google Scholar
Kitatani K, Idkowiak-Baldys J, Hannun YA: The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal. 2008, 20: 1010-1018. 10.1016/j.cellsig.2007.12.006 ArticlePubMed CentralCASPubMed Google Scholar
Hannun YA, Obeid LM: Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008, 9: 139-150. 10.1038/nrm2329 ArticleCASPubMed Google Scholar
Wennekes T, Van den Berg RJ, Boot RG, Van der Marel GA, Overkleeft HS, Aerts JM: Glycosphingolipids–nature, function, and pharmacological modulation. Angew Chem Int Ed Engl. 2009, 48: 8848-8869. 10.1002/anie.200902620 ArticleCASPubMed Google Scholar
Riedl SJ, Shi Y: Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol. 2004, 5: 897-907. 10.1038/nrm1496 ArticleCASPubMed Google Scholar
Szegezdi E, Fitzgerald U, Samali A: Caspase-12 and ER-stress-mediated apoptosis: the story so far. Ann N Y Acad Sci. 2003, 1010: 186-194. 10.1196/annals.1299.032 ArticleCASPubMed Google Scholar
Mathis D, Vence L, Benoist C: Beta-Cell death during progression to diabetes. Nature. 2001, 414: 792-798. 10.1038/414792a ArticleCASPubMed Google Scholar
Chandra J, Zhivotovsky B, Zaitsev V, Juntti-Berggren L, Berggren PO, Orrenius S: Role of apoptosis in pancreatic beta-cell death in diabetes. Diabetes. 2001, 50: S44-S47. 10.2337/diabetes.50.2007.S44 ArticleCASPubMed Google Scholar
Kim KA, Lee MS: Recent progress in research on beta-cell apoptosis by cytokines. Front Biosci. 2009, 14: 657-664. ArticleCAS Google Scholar
Lang F, Ullrich S, Gulbins E: Ceramide formation as a target in beta-cell survival and function. Expert Opin Ther Targets. 2011, 15. 10.1-1071. ArticleCASPubMed Google Scholar
Ishizuka N, Yagui K, Tokuyama Y, Yamada K, Suzuki Y, Miyazaki J, Hashimoto N, Makino H, Saito Y, Kanatsuka A: Tumor necrosis factor alpha signaling pathway and apoptosis in pancreatic beta cells. Metabolism. 1999, 48: 1485-1492. 10.1016/S0026-0495(99)90234-2 ArticleCASPubMed Google Scholar
Sjoholm A: Ceramide inhibits pancreatic beta-cell insulin production and mitogenesis and mimics the actions of interleukin-1 beta. FEBS Lett. 1995, 367: 283-286. 10.1016/0014-5793(95)00470-T ArticleCASPubMed Google Scholar
Welsh N: Interleukin-1 beta-induced ceramide and diacylglycerol generation may lead to activation of the c-Jun NH2-terminal kinase and the transcription factor ATF2 in the insulin-producing cell line RINm5F. J Biol Chem. 1996, 271: 8307-8312. ArticleCASPubMed Google Scholar
Major CD, Gao ZY, Wolf BA: Activation of the sphingomyelinase/ceramide signal transduction pathway in insulin-secreting beta-cells: role in cytokine-induced beta-cell death. Diabetes. 1999, 48: 1372-1380. 10.2337/diabetes.48.7.1372 ArticleCASPubMed Google Scholar
Zhu Q, Shan X, Miao H, Lu Y, Xu J, You N, Liu C, Liao DF, Jin J: Acute activation of acid ceramidase affects cytokine-induced cytotoxicity in rat islet beta-cells. FEBS Lett. 2009, 583: 2136-2141. 10.1016/j.febslet.2009.05.047 ArticleCASPubMed Google Scholar
Mastrandrea LD, Sessanna SM, Laychock SG: Sphingosine kinase activity and sphingosine-1 phosphate production in rat pancreatic islets and INS-1 cells: response to cytokines. Diabetes. 2005, 54: 1429-1436. 10.2337/diabetes.54.5.1429 ArticleCASPubMed Google Scholar
Shimabukuro M, Zhou YT, Levi M, Unger RH: Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc Natl Acad Sci USA. 1998, 95: 2498-2502. 10.1073/pnas.95.5.2498 ArticlePubMed CentralCASPubMed Google Scholar
Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY: Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes. 2001, 50: 69-76. 10.2337/diabetes.50.1.69 ArticleCASPubMed Google Scholar
Lupi R, Dotta F, Marselli L, Del Guerra S, Masini M, Santangelo C, Patané G, Boggi U, Piro S, Anello M, Bergamini E, Mosca F, Di Mario U, Del Prato S, Marchetti P: Prolonged exposure to free fatty acids has cytostatic and proapoptotic effects on human pancreatic islets: evidence that beta cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes. 2002, 51: 1437-1442. 10.2337/diabetes.51.5.1437 ArticleCASPubMed Google Scholar
Maedler K, Oberholzer J, Bucher P, Spinas GA, Donath MY: Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes. 2003, 52: 726-733. 10.2337/diabetes.52.3.726 ArticleCASPubMed Google Scholar
de Vries JE, Vork MM, Roemen TH, de Jong YF, Cleutjens JP, Van der Vusse GJ, Van Bilsen M: Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J Lipid Res. 1997, 38: 1384-1394. CASPubMed Google Scholar
Shimabukuro M, Higa M, Zhou YT, Wang MY, Newgard CB, Unger RH: Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J Biol Chem. 1998, 273: 32487-32490. 10.1074/jbc.273.49.32487 ArticleCASPubMed Google Scholar
Lupi R, Del Guerra S, Fierabracci V, Marselli L, Novelli M, Patanè G, Boggi U, Mosca F, Piro S, Del Prato S, Marchetti P: Lipotoxicity in human pancreatic islets and the protective effect of metformin. Diabetes. 2002, 51: S134-S137. 10.2337/diabetes.51.2007.S134 ArticleCASPubMed Google Scholar
Boslem E, Meikle PJ, Biden TJ: Roles of ceramide and sphingolipids in pancreatic β-cell function and dysfunction. Islets. 2012, 4: 177-187. 10.4161/isl.20102 ArticlePubMed CentralPubMed Google Scholar
Bionda C, Portoukalian J, Schmitt D, Rodriguez-Lafrasse C, Ardail D: Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria?. Biochem J. 2004, 382: 527-533. 10.1042/BJ20031819 ArticlePubMed CentralCASPubMed Google Scholar
Boslem E, MacIntosh G, Preston AM, Bartley C, Busch AK, Fuller M, Laybutt DR, Meikle PJ, Biden TJ: A lipidomic screen of palmitate-treated MIN6 β-cells links sphingolipid metabolites with endoplasmic reticulum (ER) stress and impaired protein trafficking. Biochem J. 2011, 435: 267-276. 10.1042/BJ20101867 ArticleCASPubMed Google Scholar
Veret J, Coant N, Berdyshev EV, Skobeleva A, Therville N, Bailbé D, Gorshkova I, Natarajan V, Portha B, Le Stunff H: Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in glucolipotoxicity-induced apoptosis of INS-1 β-cells. Biochem J. 2011, 438: 177-189. 10.1042/BJ20101386 ArticleCASPubMed Google Scholar
Green DR: Apoptotic pathways: ten minutes to dead. Cell. 2005, 121: 671-674. 10.1016/j.cell.2005.05.019 ArticleCASPubMed Google Scholar
Taylor RC, Cullen SP, Martin SJ: Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008, 9: 231-241. ArticleCASPubMed Google Scholar
Thomas HE, McKenzie MD, Angstetra E, Campbell PD, Kay TW: Beta cell apoptosis in diabetes. Apoptosis. 2009, 14: 1389-1404. 10.1007/s10495-009-0339-5 ArticlePubMed Google Scholar
Liadis N, Salmena L, Kwan E, Tajmir P, Schroer SA, Radziszewska A, Li X, Sheu L, Eweida M, Xu S, Gaisano HY, Hakem R, Woo M: Distinct in vivo roles of caspase-8 in beta-cells in physiological and diabetes models. Diabetes. 2007, 56: 2302-2311. 10.2337/db06-1771 ArticleCASPubMed Google Scholar
Liadis N, Murakami K, Eweida M, Elford AR, Sheu L, Gaisano HY, Hakem R, Ohashi PS, Woo M: Caspase-3-dependent beta-cell apoptosis in the initiation of autoimmune diabetes mellitus. Mol Cell Biol. 2005, 25: 3620-3629. 10.1128/MCB.25.9.3620-3629.2005 ArticlePubMed CentralCASPubMed Google Scholar
Tait SW, Green DR: Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol. 2010, 11: 621-632. 10.1038/nrm2952 ArticleCASPubMed Google Scholar
Novgorodov SA, Szulc ZM, Luberto C, Jones JA, Bielawski J, Bielawska A, Hannun YA, Obeid LM: Positively charged ceramide is a potent inducer of mitochondrial permeabilization. J Biol Chem. 2005, 280: 16096-16105. 10.1074/jbc.M411707200 ArticleCASPubMed Google Scholar
Birbes H, El Bawab S, Hannun YA, Obeid LM: Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J. 2001, 15: 2669-2679. 10.1096/fj.01-0539com ArticleCASPubMed Google Scholar
Birbes H, Luberto C, Hsu YT, El Bawab S, Hannun YA, Obeid LM: A mitochondrial pool of sphingomyelin is involved in TNFalpha-induced Bax translocation to mitochondria. Biochem J. 2005, 386: 445-451. 10.1042/BJ20041627 ArticlePubMed CentralCASPubMed Google Scholar
Kashkar H, Wiegmann V, Yazdanpanah B, Haubert D, Kronke M: Acid sphingomyelinase is indispensable for UV light-induced Bax conformational change at the mitochondrial membrane. J Biol Chem. 2005, 280: 20804-20813. 10.1074/jbc.M410869200 ArticleCASPubMed Google Scholar
Birbes H, El Bawab S, Obeid LM, Hannun YA: Mitochondria and ceramide: intertwined roles in regulation of apoptosis. Adv Enzyme Regul. 2002, 42: 113-129. ArticleCASPubMed Google Scholar
Allison J, Thomas H, Beck D, Brady JL, Lew AM, Elefanty A, Kosaka H, Kay TW, Huang DC, Strasser A: Transgenic overexpression of human Bcl-2 in islet beta cells inhibits apoptosis but does not prevent autoimmune destruction. Int Immunol. 2000, 12: 9-17. 10.1093/intimm/12.1.9 ArticleCASPubMed Google Scholar
Von Haefen C, Wieder T, Gillissen B, Starck L, Graupner V, Dorken B, Daniel PT: Ceramide induces mitochondrial activation and apoptosis via a Bax-dependent pathway in human carcinoma cells. Oncogene. 2002, 21: 4009-4019. 10.1038/sj.onc.1205497 ArticleCASPubMed Google Scholar
Maestre I, Jordan J, Calvo S, Reig JA, Cena V, Soria B, Prentki M, Roche E: Mitochondrial dysfunction is involved in apoptosis induced by serum withdrawal and fatty acids in the beta-cell line INS-1. Endocrinology. 2003, 144: 335-345. 10.1210/en.2001-211282 ArticleCASPubMed Google Scholar
Siskind LJ, Kolesnick RN, Colombini M: Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion. 2006, 6: 118-125. 10.1016/j.mito.2006.03.002 ArticlePubMed CentralCASPubMed Google Scholar
Navarro P, Valverde AM, Rohn JL, Benito M, Lorenzo M: Akt mediates insulin rescue from apoptosis in brown adipocytes: effect of ceramide. Growth Horm IGF Res. 2000, 10: 256-266. 10.1054/ghir.2000.0165 ArticleCASPubMed Google Scholar
Tiganis T: Reactive oxygen species and insulin resistance: the good, the bad and the ugly. Trends Pharmacol Sci. 2011, 32: 82-89. 10.1016/j.tips.2010.11.006 ArticleCASPubMed Google Scholar
Zhang AY, Teggatz EG, Zou AP, Campbell WB, Li PL: Endostatin uncouples NO and Ca2+ response to bradykinin through enhanced O2*- production in the intact coronary endothelium. Am J Physiol Heart Circ Physiol. 2005, 288: H686-H694. ArticleCASPubMed Google Scholar
García-Ruiz C, Colell A, Marí M, Morales A, Fernandez-Checa JC: Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem. 1997, 272: 11369-11377. 10.1074/jbc.272.17.11369 ArticlePubMed Google Scholar
Hatanaka Y, Fujii J, Fukutomi T, Watanabe T, Che W, Sanada Y, Igarashi Y, Taniguchi N: Reactive oxygen species enhances the induction of inducible nitric oxide synthase by sphingomyelinase in RAW264.7 cells. Biochim Biophys Acta. 1998, 1393: 203-210. 10.1016/S0005-2760(98)00066-6 ArticleCASPubMed Google Scholar
Voehringer DW, McConkey DJ, McDonnell TJ, Brisbay S, Meyn RE: Bcl-2 expression causes redistribution of glutathione to the nucleus. Proc Natl Acad Sci U S A. 1998, 95: 2956-2960. 10.1073/pnas.95.6.2956 ArticlePubMed CentralCASPubMed Google Scholar
Pilane CM, LaBelle EF: NO induced apoptosis of vascular smooth muscle cells accompanied by ceramide increase. J Cell Physiol. 2004, 199: 310-315. 10.1002/jcp.10464 ArticleCASPubMed Google Scholar
Franzen R, Fabbro D, Aschrafi A, Pfeilschifter J, Huwiler A: Nitric oxide induces degradation of the neutral ceramidase in rat renal mesangial cells and is counterregulated by protein kinase C. J Biol Chem. 2002, 277: 46184-46190. 10.1074/jbc.M204034200 ArticleCASPubMed Google Scholar
Di Paola M, Cocco T, Lorusso M: Ceramide interaction with the respiratory chain of heart mitochondria. Biochemistry. 2000, 39: 6660-6668. 10.1021/bi9924415 ArticleCASPubMed Google Scholar
Gudz TI, Tserng KY, Hoppel CL: Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem. 1997, 272: 24154-24158. 10.1074/jbc.272.39.24154 ArticleCASPubMed Google Scholar
Reinehr R, Becker S, Eberle A, Grether-Beck S, Haussinger D: Involvement of NADPH oxidase isoforms and Src family kinases in CD95-dependent hepatocyte apoptosis. J Biol Chem. 2005, 280: 27179-27194. 10.1074/jbc.M414361200 ArticleCASPubMed Google Scholar
Morgan D, Rebelato E, Abdulkader F, Graciano MF, Oliveira-Emilio HR, Hirata AE, Rocha MS, Bordin S, Curi R, Carpinelli AR: Association of NAD(P)H oxidase with glucose-induced insulin secretion by pancreatic beta-cells. Endocrinology. 2009, 150: 2197-2201. ArticleCASPubMed Google Scholar
Shimabukuro M, Wang MY, Zhou YT, Newgard CB, Unger RH: Protection against lipoapoptosis of beta cells through leptin-dependent maintenance of Bcl-2 expression. Proc Natl Acad Sci U S A. 1998, 95: 9558-9561. 10.1073/pnas.95.16.9558 ArticlePubMed CentralCASPubMed Google Scholar
Unger RH, Orci L: Lipoapoptosis: its mechanism and its diseases. Biochim Biophys Acta. 2002, 1585: 202-212. 10.1016/S1388-1981(02)00342-6 ArticleCASPubMed Google Scholar
Won JS, Im YB, Khan M, Singh AK, Singh I: The role of neutral sphingomyelinase produced ceramide in lipopolysaccharide-mediated expression of inducible nitric oxide synthase. J Neurochem. 2004, 88: 583-593. ArticleCASPubMed Google Scholar
Leibowitz G, Bachar E, Shaked M, Sinai A, Ketzinel-Gilad M, Cerasi E, Kaiser N: Glucose regulation of β-cell stress in type 2 diabetes. Diabetes Obes Metab. 2010, 12: 66-75. ArticleCASPubMed Google Scholar
Scheuner D, Kaufman RJ: The unfolded protein response: a pathway that links insulin demand with beta-cell failure and diabetes. Endocr Rev. 2008, 29: 317-333. ArticlePubMed CentralCASPubMed Google Scholar
Eizirik DL, Cardozo AK, Cnop M: The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev. 2008, 29: 42-61. ArticleCASPubMed Google Scholar
Fonseca SG, Burcin M, Gromada J, Urano F: Endoplasmic reticulum stress in beta-cells and development of diabetes. Curr Opin Pharmacol. 2009, 9: 763-770. 10.1016/j.coph.2009.07.003 ArticlePubMed CentralCASPubMed Google Scholar
Cnop M, Foufelle F, Velloso LA: Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med. 2012, 18: 59-68. 10.1016/j.molmed.2011.07.010 ArticleCASPubMed Google Scholar
Oyadomari S, Araki E, Mori M: Endoplasmic reticulum stress-mediated apoptosis in pancreatic beta-cells. Apoptosis. 2002, 7: 335-345. 10.1023/A:1016175429877 ArticleCASPubMed Google Scholar
Socha L, Silva D, Lesage S, Goodnow C, Petrovsky N: The role of endoplasmic reticulum stress in nonimmune diabetes: NOD.k iHEL, a novel model of beta cell death. Ann N Y Acad Sci. 2003, 1005: 178-183. 10.1196/annals.1288.022 ArticleCASPubMed Google Scholar
Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ: Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia. 2007, 50: 752-763. 10.1007/s00125-006-0590-z ArticleCASPubMed Google Scholar
Lai E, Bikopoulos G, Wheeler MB, Rozakis-Adcock M, Volchuk A: Differential activation of ER stress and apoptosis in response to chronically elevated free fatty acids in pancreatic beta-cells. Am J Physiol Endocrinol Metab. 2008, 294: E540-E550. 10.1152/ajpendo.00478.2007 ArticleCASPubMed Google Scholar
Lei X, Barbour SE, Ramanadham S: Group VIA Ca2 + -independent phospholipase A2 (iPLA2beta) and its role in beta-cell programmed cell death. Biochimie. 2010, 92: 627-637. 10.1016/j.biochi.2010.01.005 ArticlePubMed CentralCASPubMed Google Scholar
Riemer J, Bulleid N, Herrmann JM: Disulfide formation in the ER and mitochondria: two solutions to a common process. Science. 2009, 324: 1284-1287. 10.1126/science.1170653 ArticleCASPubMed Google Scholar
Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, Franklin RA, McCubrey JA: Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia. 2003, 17: 590-603. 10.1038/sj.leu.2402824 ArticleCASPubMed Google Scholar
Muslin AJ, Tanner JW, Allen PM, Shaw AS: Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell. 1996, 84: 889-897. 10.1016/S0092-8674(00)81067-3 ArticleCASPubMed Google Scholar
Kellerer M, Mushack J, Seffer E, Mischak H, Ullrich A, Haring HU: Protein kinase C isoforms alpha, delta and theta require insulin receptor substrate-1 to inhibit the tyrosine kinase activity of the insulin receptor in human kidney embryonic cells (HEK 293 cells). Diabetologia. 1998, 41: 833-838. 10.1007/s001250050995 ArticleCASPubMed Google Scholar
Pickersgill L, Litherland GJ, Greenberg AS, Walker M, Yeaman SJ: Key role for ceramides in mediating insulin resistance in human muscle cells. J Biol Chem. 2007, 282: 12583-12589. 10.1074/jbc.M611157200 ArticleCASPubMed Google Scholar
Sabin MA, Stewart CE, Crowne EC, Turner SJ, Hunt LP, Welsh GI, Grohmann MJ, Holly JM, Shield JP: Fatty acid-induced defects in insulin signalling, in myotubes derived from children, are related to ceramide production from palmitate rather than the accumulation of intramyocellular lipid. J Cell Physiol. 2007, 211: 244-252. 10.1002/jcp.20922 ArticleCASPubMed Google Scholar
Bachmann OP, Dahl DB, Brechtel K, Machann J, Haap M, Maier T, Loviscach M, Stumvoll M, Claussen CD, Schick F, Haring HU, Jacob S: Effects of intravenous and dietary lipid challenge on intramyocellular lipid content and the relation with insulin sensitivity in humans. Diabetes. 2001, 50: 2579-2584. 10.2337/diabetes.50.11.2579 ArticleCASPubMed Google Scholar
Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, Summers SA: A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem. 2003, 278: 10297-10303. 10.1074/jbc.M212307200 ArticleCASPubMed Google Scholar
Chavez JA, Holland WL, Bar J, Sandhoff K, Summers SA: Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J Biol Chem. 2005, 280: 20148-20153. 10.1074/jbc.M412769200 ArticleCASPubMed Google Scholar
Powell DJ, Turban S, Gray A, Hajduch E, Hundal HS: Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochem J. 2004, 382: 619-629. 10.1042/BJ20040139 ArticlePubMed CentralCASPubMed Google Scholar
Summers SA, Nelson DH: A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing’s syndrome. Diabetes. 2005, 54: 591-602. 10.2337/diabetes.54.3.591 ArticleCASPubMed Google Scholar
Summers SA, Garza LA, Zhou H, Birnbaum MJ: Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol Cell Bio. 1998, 18: 5457-5464. ArticleCAS Google Scholar
Wang CN, O’Brien L, Brindley DN: Effects of cell-permeable ceramides and tumor necrosis factor-alpha on insulin signaling and glucose uptake in 3T3-L1 adipocytes. Diabetes. 1998, 47: 24-31. 10.2337/diabetes.47.1.24 ArticleCASPubMed Google Scholar
Van Epps-Fung M, Williford J, Wells A, Hardy RW: Fatty acid-induced insulin resistance in adipocytes. Endocrinology. 1997, 138: 4338-4345. 10.1210/en.138.10.4338 CASPubMed Google Scholar
Sparagna GC, Hickson-Bick DL, Buja LM, McMillin JB: A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol. 2000, 279: H2124-H2132. CASPubMed Google Scholar
Watson ML, Coghlan M, Hundal HS: Modulating serine palmitoyl transferase (SPT) expression and activity unveils a crucial role in lipid-induced insulin resistance in rat skeletal muscle cells. Biochem J. 2009, 417: 791-801. 10.1042/BJ20081149 ArticleCASPubMed Google Scholar
Hu W, Ross J, Geng T, Brice SE, Cowart LA: Differential regulation of dihydroceramide desaturase by palmitate versus monounsaturated fatty acids: implications for insulin resistance. J Biol Chem. 2011, 286: 16596-16605. 10.1074/jbc.M110.186916 ArticlePubMed CentralCASPubMed Google Scholar
Mei J, Wang CN, O’Brien L, Brindley DN: Cell-permeable ceramides increase basal glucose incorporation into triacylglycerols but decrease the stimulation by insulin in 3T3-L1 adipocytes. Int J Obes Relat Metab Disord. 2003, 27: 31-39. 10.1038/sj.ijo.0802183 ArticleCASPubMed Google Scholar
Frangioudakis G, Garrard J, Raddatz K, Nadler JL, Mitchell TW, Schmitz-Peiffer C: Saturated- and n-6 polyunsaturated-fat diets each induce ceramide accumulation in mouse skeletal muscle: reversal and improvement of glucose tolerance by lipid metabolism inhibitors. Endocrinology. 2010, 151: 4187-4196. 10.1210/en.2010-0250 ArticlePubMed CentralCASPubMed Google Scholar
Yang G, Badeanlou L, Bielawski J, Roberts AJ, Hannun YA, Samad F: Central role of ceramide biosynthesis in body weight regulation, energy metabolism, and the metabolic syndrome. Am J Physiol Endocrinol Metab. 2009, 297: E211-E224. 10.1152/ajpendo.91014.2008 ArticlePubMed CentralCASPubMed Google Scholar
Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, Nelson DH, Karathanasis SK, Fontenot GK, Birnbaum MJ, Summers SA: Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 2007, 5: 167-179. 10.1016/j.cmet.2007.01.002 ArticleCASPubMed Google Scholar
Itani SI, Ruderman NB, Schmieder F, Boden G: Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002, 51: 2005-2011. 10.2337/diabetes.51.7.2005 ArticleCASPubMed Google Scholar
Yu C, Chen Y, Cline GW, Zhang D, Zong H, Wang Y, Bergeron R, Kim JK, Cushman SW, Cooney GJ, Atcheson B, White MF, Kraegen WE, Shulman GI: Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem. 2002, 277: 50230-50236. 10.1074/jbc.M200958200 ArticleCASPubMed Google Scholar
Adams JM, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC, Mandarino LJ: Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes. 2004, 53: 25-31. ArticleCASPubMed Google Scholar
Straczkowski M, Kowalska I, Nikolajuk A, Dzienis-Straczkowska S, Kinalska I, Baranowski M, Zendzian-Piotrowska M, Brzezinska Z, Gorski J: Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle. Diabetes. 2004, 53: 1215-1221. 10.2337/diabetes.53.5.1215 ArticleCASPubMed Google Scholar
Dain A, Repossi G, Das UN, Eynard AR: Role of PUFAs, the precursors of endocannabinoids, in human obesity and type 2 diabetes. Front Biosci (Elite Ed). 2010, 2: 1432-1447. Article Google Scholar
Di Marzo V: The endocannabinoid system in obesity and type 2 diabetes. Diabetologia. 2008, 51: 1356-1367. 10.1007/s00125-008-1048-2 ArticleCASPubMed Google Scholar
Comba A, Lin YH, Eynard AR, Valentich MA, Fernandez-Zapico ME, Pasqualini ME: Basic aspects of tumor cell fatty acid-regulated signaling and transcription factors. Cancer Metastasis Rev. 2011, 30: 325-342. 10.1007/s10555-011-9308-x ArticlePubMed CentralCASPubMed Google Scholar
Luo P, Wang MH: Eicosanoids, β-cell function, and diabetes. Prostaglandins Other Lipid Mediat. 2011, 95: 1-4. 10.1016/j.prostaglandins.2011.06.001 ArticlePubMed CentralCASPubMed Google Scholar
Tornatore L, Thotakura AK, Bennett J, Moretti M, Franzoso G: The nuclear factor kappa B signaling pathway: integrating metabolism with inflammation. Trends Cell Biol. 2012, 22: 557-566. 10.1016/j.tcb.2012.08.001 ArticleCASPubMed Google Scholar
Solinas G, Karin M: JNK1 and IKKβ: molecular links between obesity and metabolic dysfunction. FASEB J. 2010, 24: 2596-2611. 10.1096/fj.09-151340 ArticleCASPubMed Google Scholar
Quintans J, Kilkus J, McShan CL, Gottschalk AR, Dawson G: Ceramide mediates the apoptotic response of WEHI 231 cells to anti-immunoglobulin, corticosteroids and irradiation. Biochem Biophys Res Commun. 1994, 202: 710-714. 10.1006/bbrc.1994.1988 ArticleCASPubMed Google Scholar
Linn SC, Kim HS, Keane EM, Andras LM, Wang E, Merrill AH: Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption. Biochem Soc Trans. 2001, 29: 831-835. 10.1042/BST0290831 ArticleCASPubMed Google Scholar
Lepine S, Lakatos B, Maziere P, Courageot MP, Sulpice JC, Giraud F: Involvement of sphingosine in dexamethasone-induced thymocyte apoptosis. Ann N Y Acad Sci. 2002, 973: 190-193. 10.1111/j.1749-6632.2002.tb04631.x ArticleCASPubMed Google Scholar
Baranowski M, Blachnio A, Zabielski P, Gorski J: Pioglitazone induces de novo ceramide synthesis in the rat heart. Prostaglandins Lipid Mediat. 2007, 83: 99-111. 10.1016/j.prostaglandins.2006.10.004. ArticleCAS Google Scholar
Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A, Gross RW, Kelly DP: A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci USA. 2003, 100: 1226-1231. 10.1073/pnas.0336724100 ArticlePubMed CentralCASPubMed Google Scholar
Hauner H: The mode of action of thiazolidinediones. Diabetes Metab Res Rev. 2002, 18: S10-S15. 10.1002/dmrr.249 ArticleCASPubMed Google Scholar
Zendzian-Piotrowska M, Baranowski M, Zabielski P, Gorski J: Effects of pioglitazone and high-fat diet on ceramide metabolism in rat skeletal muscles. J Physiol Pharmacol. 2006, 57: 101-114. PubMed Google Scholar
Planavila A, Alegret M, Sanchez RM, Rodriguez-Calvo R, Laguna JC, Vazquez-Carrera M: Increased Akt protein expression is associated with decreased ceramide content in skeletal muscle of troglitazone-treated mice. Biochem Pharmacol. 2005, 69: 1195-1204. 10.1016/j.bcp.2005.01.015 ArticleCASPubMed Google Scholar
Lessard SJ, Lo Giudice SL, Lau W, Reid JJ, Turner N, Febbraio MA, Hawley JA, Watt MJ: Rosiglitazone enhances glucose tolerance by mechanisms other than reduction of fatty acid accumulation within skeletal muscle. Endocrinology. 2004, 145: 5665-5670. 10.1210/en.2004-0659 ArticleCASPubMed Google Scholar
Wolf G: Serum retinol-binding protein: a link between obesity, insulin resistance, and type 2 diabetes. Nutr Rev. 2007, 65: 251-256. 10.1111/j.1753-4887.2007.tb00302.x ArticlePubMed Google Scholar
Thomas DE, Elliott EJ, Naughton GA: Exercise for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2006, 3: CD002968. Google Scholar
Dobrzyn A, Zendzian-Piotrowska M, Gorski J: Effect of endurance training on the sphingomyelin-signalling pathway activity in the skeletal muscles of the rat. J Physiol Pharmacol. 2004, 55: 305-313. CASPubMed Google Scholar
Smith AC, Mullen KL, Junkin KA, Nickerson J, Chabowski A, Bonen A, Dyck DJ: Metformin and exercise reduce muscle FAT/CD36 and lipid accumulation and blunt the progression of high-fat diet-induced hyperglycemia. Am J Physiol Endocrinol Metab. 2007, 293: E172-E181. 10.1152/ajpendo.00677.2006 ArticleCASPubMed Google Scholar
Dube JJ, Amati F, Stefanovic-Racic M, Toledo FG, Sauers SE, Goodpaster BH: Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete’s paradox revisited. Am J Physiol Endocrinol Metab. 2008, 294: E882-E888. 10.1152/ajpendo.00769.2007 ArticlePubMed CentralCASPubMed Google Scholar
Bruce CR, Thrush AB, Mertz VA, Bezaire V, Chabowski A, Heigenhauser GJ, Dyck DJ: Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol Endocrinol Metab. 2006, 291: E99-E107. 10.1152/ajpendo.00587.2005 ArticleCASPubMed Google Scholar
Lessard SJ, Rivas DA, Chen ZP, Bonen A, Febbraio MA, Reeder DW, Kemp BE, Yaspelkis BB, Hawley JA: Tissue-specific effects of rosiglitazone and exercise in the treatment of lipid-induced insulin resistance. Diabetes. 2007, 56: 1856-1864. 10.2337/db06-1065 ArticleCASPubMed Google Scholar
Helge JW, Dobrzyn A, Saltin B, Gorski J: Exercise and training effects on ceramide metabolism in human skeletal muscle. Exp Physiol. 2004, 89: 119-127. 10.1113/expphysiol.2003.002605 ArticleCASPubMed Google Scholar
Dandona P, Aljada A, Bandyopadhyay A: Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 2004, 25: 4-7. 10.1016/j.it.2003.10.013 ArticleCASPubMed Google Scholar
Moon YS, Kim DH, Song DK: Serum tumor necrosis factor-alpha levels and components of the metabolic syndrome in obese adolescents. Metabolism. 2004, 53: 863-867. 10.1016/j.metabol.2004.02.007 ArticleCASPubMed Google Scholar
Wu D, Ren Z, Pae M, Guo W, Cui X, Merrill AH, Meydani SN: Aging up-regulates expression of inflammatory mediators in mouse adipose tissue. J Immunol. 2007, 179: 4829-4839. ArticleCASPubMed Google Scholar
Kanety H, Hemi R, Papa MZ, Karasik A: Sphingomyelinase and ceramide suppress insulin-induced tyrosine phosphorylation of the insulin receptor substrate-1. J Biol Chem. 1996, 271: 9895-9897. 10.1074/jbc.271.17.9895 ArticleCASPubMed Google Scholar
Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, Zick Y: A molecular basis for insulin resistance. Elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibitstheir binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem. 1997, 272: 29911-29918. 10.1074/jbc.272.47.29911 ArticleCASPubMed Google Scholar
Sathyanarayana P, Barthwal MK, Kundu CN, Lane ME, Bergmann A, Tzivion G, Rana A: Activation of the Drosophila MLK by ceramide reveals TNF-alpha and ceramide as agonists of mammalian MLK3. Mol Cell. 2002, 10: 1527-1533. 10.1016/S1097-2765(02)00734-7 ArticleCASPubMed Google Scholar
Xu Z, Maroney AC, Dobrzanski P, Kukekov NV, Greene LA: The MLK family mediates c-Jun N-terminal kinase activation in neuronal apoptosis. Mol Cell Biol. 2001, 21: 4713-4724. 10.1128/MCB.21.14.4713-4724.2001 ArticlePubMed CentralCASPubMed Google Scholar
Kim KY, Kim BC, Xu Z, Kim SJ: Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-beta-induced apoptosis in hepatoma cells. J Biol Chem. 2004, 279: 29478-29484. 10.1074/jbc.M313947200 ArticleCASPubMed Google Scholar
Aguirre V, Uchida T, Yenush L, Davis R, White MF: The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000, 275: 9047-9054. 10.1074/jbc.275.12.9047 ArticleCASPubMed Google Scholar
Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS: A central role for JNK in obesity and insulin resistance. Nature. 2002, 420: 333-336. 10.1038/nature01137 ArticleCASPubMed Google Scholar
Gual P, Le Y: Marchand-Brustel, J.F. Tanti, Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie. 2005, 87: 99-109. 10.1016/j.biochi.2004.10.019 ArticleCASPubMed Google Scholar
Waeber G, Delplanque J, Bonny C, Mooser V, Steinmann M, Widmann C, Maillard A, Miklossy J, Dina C, Hani EH, Vionnet N, Nicod P, Boutin P, Froguel P: The gene MAPK8IP1, encoding islet-brain-1, is a candidate for type 2 diabetes. Nat Genet. 2000, 24: 291-295. 10.1038/73523 ArticleCASPubMed Google Scholar
Salinas M, Lopez-Valdaliso R, Martin D, Alvarez A, Cuadrado A: Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells. Mol Cell Neurosci. 2000, 15: 156-169. 10.1006/mcne.1999.0813 ArticleCASPubMed Google Scholar
Schubert KM, Scheid MP, Duronio V: Ceramide inhibits protein kinase B/Akt by promoting dephosphorylation of serine 473. J Biol Chem. 2000, 275: 13330-13335. 10.1074/jbc.275.18.13330 ArticleCASPubMed Google Scholar
Stratford S, DeWald DB, Summers SA: Ceramide dissociates 3′-phosphoinositide production from pleckstrin homology domain translocation. Biochem J. 2001, 354: 359-368. 10.1042/0264-6021:3540359 ArticlePubMed CentralCASPubMed Google Scholar
Zundel W, Giaccia A: Inhibition of the anti-apoptotic PI(3)K/Akt/Bad pathway by stress. Genes Dev. 1998, 12: 1941-1946. 10.1101/gad.12.13.1941 ArticlePubMed CentralCASPubMed Google Scholar
Teruel T, Hernandez R, Lorenzo M: Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state. Diabetes. 2001, 50: 2563-2571. 10.2337/diabetes.50.11.2563 ArticleCASPubMed Google Scholar
Zinda MJ, Vlahos CJ, Lai MT: Ceramide induces the dephosphorylation and inhibition of constitutively activated Akt in PTEN negative U87MG cells. Biochem Biophys Res Commun. 2001, 280: 1107-1115. 10.1006/bbrc.2000.4248 ArticleCASPubMed Google Scholar
Bourbon NA, Sandirasegarane L, Kester M: Ceramide-induced inhibition of Akt is mediated through protein kinase Czeta: implications for growth arrest. J Biol Chem. 2002, 277: 3286-3292. 10.1074/jbc.M110541200 ArticleCASPubMed Google Scholar
Powell DJ, Hajduch E, Kular G, Hundal HS: Ceramide disables 3-phosphoinositide binding to the pleckstrin homology domain of protein kinase B (PKB)/Akt by a PKCzeta-dependent mechanism. Mol Cell Biol. 2003, 23: 7794-7808. 10.1128/MCB.23.21.7794-7808.2003 ArticlePubMed CentralCASPubMed Google Scholar
Hajduch E, Turban S, Le Liepvre X, Le Lay S, Lipina C, Dimopoulos N, Dugail I, Hundal HS: Targeting of PKCzeta and PKB to caveolin-enriched microdomains represents a crucial step underpinning the disruption in PKB-directed signalling by ceramide. Biochem J. 2008, 410: 369-379. 10.1042/BJ20070936 ArticleCASPubMed Google Scholar
George KS, Wu S: Lipid raft: a floating island of death or survival. Toxicol Appl Pharmacol. 2012, 259: 311-319. 10.1016/j.taap.2012.01.007 ArticlePubMed CentralCASPubMed Google Scholar
Zhang Y, Li X, Becker KA, Gulbins E: Ceramide-enriched membrane domains–structure and function. Biochim Biophys Acta. 2009, 1788: 178-183. 10.1016/j.bbamem.2008.07.030 ArticleCASPubMed Google Scholar
Cremesti A, Paris F, Grassme H, Holler N, Tschopp J, Fuks Z, Gulbins E, Kolesnick R: Ceramide enables fas to cap and kill. J Biol Chem. 2001, 276: 23954-23961. 10.1074/jbc.M101866200 ArticleCASPubMed Google Scholar
Hueber AO, Bernard AM, Herincs Z, Couzinet A, He HT: An essential role for membrane rafts in the initiation of Fas/CD95-triggered cell death in mouse thymocytes. EMBO Rep. 2002, 3: 190-196. 10.1093/embo-reports/kvf022 ArticlePubMed CentralCASPubMed Google Scholar
Stralfors P: Caveolins and caveolae, roles in insulin signalling and diabetes. Adv Exp Med Biol. 2012, 729: 111-126. 10.1007/978-1-4614-1222-9_8 ArticlePubMed Google Scholar
Goswami R, Singh D, Phillips G, Kilkus J, Dawson G: Ceramide regulation of the tumor suppressor phosphatase PTEN in rafts isolated from neurotumor cell lines. J Neurosci Res. 2005, 81: 541-550. 10.1002/jnr.20550 ArticleCASPubMed Google Scholar
Lipina C, Hundal HS: Sphingolipids: agents provocateurs in the pathogenesis of insulin resistance. Diabetologia. 2011, 54: 1596-1607. 10.1007/s00125-011-2127-3 ArticleCASPubMed Google Scholar
Briaud I, Harmon JS, Kelpe CL, Segu VB, Poitout V: Lipotoxicity of the pancreatic beta-cell is associated with glucose-dependent esterification of fatty acids into neutral lipids. Diabetes. 2001, 50: 315-321. 10.2337/diabetes.50.2.315 ArticlePubMed CentralCASPubMed Google Scholar
Kelpe CL, Moore PC, Parazzoli SD, Wicksteed B, Rhodes CJ, Poitout V: Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. J Biol Chem. 2003, 278: 30015-30021. 10.1074/jbc.M302548200 ArticleCASPubMed Google Scholar
Guo J, Qian Y, Xi X, Hu X, Zhu J, Han X: Blockage of ceramide metabolism exacerbates palmitate inhibition of pro-insulin gene expression in pancreatic beta-cells. Mol Cell Biochem. 2010, 338: 283-290. 10.1007/s11010-009-0362-4 ArticleCASPubMed Google Scholar
Henderson E, Stein R: c-jun inhibits transcriptional activation by the insulin enhancer, and the insulin control element is the target of control. Mol Cell Biol. 1994, 14: 655-662. ArticlePubMed CentralCASPubMed Google Scholar
Kaneto H, Xu G, Fujii N, Kim S, Bonner-Weir S, Weir GC: Involvement of c-Jun N-terminal kinase in oxidative stress-mediated suppression of insulin gene expression. J Biol Chem. 2002, 277: 30010-30018. 10.1074/jbc.M202066200 ArticleCASPubMed Google Scholar
Bourbon NA, Yun J, Kester M: Ceramide directly activates protein kinase C zeta to regulate a stress-activated protein kinase signaling complex. J Biol Chem. 2000, 275: 35617-35623. 10.1074/jbc.M007346200 ArticleCASPubMed Google Scholar
Furukawa N, Shirotani T, Araki E, Kaneko K, Todaka M, Matsumoto K, Tsuruzoe K, Motoshima H, Yoshizato K, Kishikawa H, Shichiri M: Possible involvement of atypical protein kinase C (PKC) in glucose-sensitive expression of the human insulingene: DNA binding activity and transcriptional activity of pancreatic and duodenal homeobox gene-1 (PDX-1) areenhanced via calphostin C-sensitive but phorbol 12-myristate 13-acetate (PMA) and Go 6976-insensitive pathway. Endocr J. 1999, 46: 43-58. 10.1507/endocrj.46.43 ArticleCASPubMed Google Scholar
Long SD, Pekala PH: Lipid mediators of insulin resistance: ceramide signalling down-regulates GLUT4 gene transcription in 3T3-L1 adipocytes. Biochem J. 1996, 319: 179-184. ArticlePubMed CentralCASPubMed Google Scholar
Boudina S, Abel ED: Diabetic cardiomyopathy revisited. Circulation. 2007, 115: 3213-3223. 10.1161/CIRCULATIONAHA.106.679597 ArticlePubMed Google Scholar
Park TS, Hu Y, Noh HL, Drosatos K, Okajima K, Buchanan J, Tuinei J, Homma S, Jiang XC, Abel ED, Goldberg IJ: Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J Lipid Res. 2008, 49: 2101-2112. 10.1194/jlr.M800147-JLR200 ArticlePubMed CentralCASPubMed Google Scholar
Basu R, Oudit GY, Wang X, Zhang L, Ussher JR, Lopaschuk GD, Kassiri Z: Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diastolic dysfunction with preserved systolic function. Am J Physiol Heart Circ Physiol. 2009, 297: H2096-H2108. 10.1152/ajpheart.00452.2009 ArticleCASPubMed Google Scholar
Gorska M, Baranczuk E, Dobrzyn A: Secretory Zn2 + -dependent sphingomyelinase activity in the serum of patients with type 2 diabetes is elevated. Horm Metab Res. 2003, 35: 506-507. ArticleCASPubMed Google Scholar
Schissel SL, Tweedie-Hardman J, Rapp JH, Graham G, Williams KJ, Tabas I: Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low density lipoprotein. Proposed role for arterial-wall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J Clin Invest. 1996, 98: 1455-1464. 10.1172/JCI118934 ArticlePubMed CentralCASPubMed Google Scholar
Devlin CM, Leventhal AR, Kuriakose G, Schuchman EH, Williams KJ, Tabas I: Acid sphingomyelinase promotes lipoprotein retention within early atheromata and accelerates lesion progression. Arterioscler Thromb Vasc Biol. 2008, 28: 1723-1730. 10.1161/ATVBAHA.108.173344 ArticlePubMed CentralCASPubMed Google Scholar
Park TS, Panek RL, Mueller SB, Hanselman JC, Rosebury WS, Robertson AW, Kindt EK, Homan R, Karathanasis SK, Rekhter MD: Inhibition of sphingomyelin synthesis reduces atherogenesis in apolipoprotein E-knockout mice. Circulation. 2004, 110: 3465-3471. 10.1161/01.CIR.0000148370.60535.22 ArticleCASPubMed Google Scholar
Liu G, Han F, Yang Y, Xie Y, Jiang H, Mao Y, Wang H, Wang M, Chen R, Yang J, Chen J: Evaluation of sphingolipid metabolism in renal cortex of rats with streptozotocin-induced diabetes and the effectsof rapamycin. Nephrol Dial Transplant. 2011, 26: 1493-1502. 10.1093/ndt/gfq633 ArticleCASPubMed Google Scholar
Itoh Y, Yano T, Sendo T, Sueyasu M, Hirano K, Kanaide H, Oishi R: Involvement of de novo ceramide synthesis in radiocontrast-induced renal tubular cell injury. Kidney Int. 2006, 69: 288-297. 10.1038/sj.ki.5000057 ArticleCASPubMed Google Scholar
Basnakian AG, Ueda N, Hong X, Galitovsky VE, Yin X, Shah SV: Ceramide synthase is essential for endonuclease-mediated death of renal tubular epithelial cells induced by hypoxia-reoxygenation. Am J Physiol Renal Physiol. 2005, 288: F308-F314. ArticleCASPubMed Google Scholar
Suzuki J, Akahane K, Nakamura J, Naruse K, Kamiya H, Himeno T, Nakamura N, Shibata T, Kondo M, Nagasaki H, Fujiya A, Oiso Y, Hamada Y: Palmitate induces apoptosis in Schwann cells via both ceramide-dependent and independent pathways. Neuroscience. 2011, 176: 188-198. ArticleCASPubMed Google Scholar
Fong DS, Aiello L, Gardner TW, King GL, Blankenship G, Cavallerano JD, Ferris FL, Klein R: Diabetic retinopathy. Diabetes Care. 2003, 26: 226-229. 10.2337/diacare.26.1.226 ArticlePubMed Google Scholar
Cacicedo JM, Benjachareowong S, Chou E, Ruderman NB, Ido Y: Palmitate-induced apoptosis in cultured bovine retinal pericytes: roles of NAD(P)H oxidase, oxidant stress, and ceramide. Diabetes. 2005, 54: 1838-1845. 10.2337/diabetes.54.6.1838 ArticleCASPubMed Google Scholar
Denis U, Lecomte M, Paget C, Ruggiero D, Wiernsperger N, Lagarde M: Advanced glycation endproducts induce apoptosis of bovine retinal pericytes in culture: involvement ofdiacylglycerol/ceramide production and oxidative stress induction. Free Radic Biol Med. 2002, 33: 236-247. 10.1016/S0891-5849(02)00879-1 ArticleCASPubMed Google Scholar
Masson E, Troncy L, Ruggiero D, Wiernsperger N, Lagarde M, El Bawab S: A series a series gangliosides mediate the effects of advanced glycation end products on pericyte and mesangial cell proliferation: a common mediator for retinal and renal microangiopathy?. Diabetes. 2005, 54: 220-227. 10.2337/diabetes.54.1.220 ArticleCASPubMed Google Scholar
Fox TE, Han X, Kelly S, Merrill AH, Martin RE, Anderson RE, Gardner TW, Kester M: Diabetes alters sphingolipid metabolism in the retina: a potential mechanism of cell death in diabetic retinopathy. Diabetes. 2006, 55: 3573-3580. 10.2337/db06-0539 ArticlePubMed CentralPubMed Google Scholar