- Giovannini MG, Scali C, Prosperi C, Bellucci A, Vannucchi MG, Rosi S, Pepeu G, Casamenti F (2002) β-Amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo. Involvement of the p38MAPK pathway. Neurobiol Dis 11:257–274. doi:10.1006/nbdi.2002.0538
Article PubMed CAS Google Scholar
- Dauer W, Przedborski S (2003) Parkinson disease. Mechanisms and models. Neuron 39:889–909. doi:10.1016/S0896-6273(03)00568-3
Article PubMed CAS Google Scholar
- Gao HM, Liu B, Zhang W, Hong JS (2003) Novel anti-inflammatory therapy for Parkinson disease. Trends Pharmacol Sci 24:395–401. doi:10.1016/S0165-6147(03)00176-7
Article PubMed CAS Google Scholar
- Jantaratnotai N, Ryu JK, Kim SU, McLarnon JG (2003) Amyloid β peptide-induced corpus callosum damage and glial activation in vivo. Neuroreport 14:1429–1433. doi:10.1097/01.wnr.0000086097.47480.a0
Article PubMed CAS Google Scholar
- Barnum CJ, Tansey MG (2010) Modeling neuroinflammatory pathogenesis of Parkinson disease. Prog Brain Res 184:113–132. doi:10.1016/S0079-6123(10)84006-3
Article PubMed CAS Google Scholar
- Qureshi GA, Baig S, Bednar I, Södersten P, Forsberg G, Siden A (1995) Increased cerebrospinal fluid concentration of nitrite in Parkinson disease. Neuroreport 6:1642–1644
Article PubMed CAS Google Scholar
- Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz JB (2000) Deficiency of inducible nitric-oxide synthase protects against MPTP toxicity in vivo. J Neurochem 74:2213–2216. doi:10.1046/j.1471-4159.2000.0742213.x
Article PubMed CAS Google Scholar
- Nagatsu T, Mogi M, Ichinose H, Togari A (2000) Changes in cytokines and neurotrophins in Parkinson disease. J Neural Transm Suppl 60:277–290
PubMed Google Scholar
- Ghosh A, Roy A, Liu X, Kordower JH, Mufson EJ, Hartley DM, Ghosh S, Mosley RL, Gendelman HE, Pahan K (2007) Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson disease. Proc Natl Acad Sci USA 104:18754–18759. doi:10.1073/pnas.0704908104
Article PubMed CAS Google Scholar
- Mondal S, Roy A, Jana A, Ghosh S, Kordower JH, Pahan K (2012) Testing NF-κB-based therapy in hemiparkinsonian monkeys. J Neuroimmune Pharmacol 7:544–556. doi:10.1007/s11481-012-9377-9
Article PubMed Google Scholar
- Skaper SD, Giusti P (2009) P2X7 receptors as a transducer in the co-occurrence of neurological/psychiatric and cardiovascular aisorders: a hypothesis. Cardiovasc Psychiatry Neurol 2009:545263. doi:10.1155/2009/545263
PubMed Google Scholar
- Rivat C, Becker C, Blugeot A, Zeau B, Mauborgne A, Pohl M, Benoliel JJ (2010) Chronic stress induces transient spinal neuroinflammation, triggering sensory hypersensitivity and long-lasting anxiety-induced hyperalgesia. Pain 150:358–368. doi:10.1016/j.pain.2010.05.031
Article PubMed Google Scholar
- Vichaya EG, Young EE, Frazier MA, Cook JL, Welsh CJ, Meagher MW (2011) Social disruption induced priming of CNS inflammatory response to Theiler's virus is dependent upon stress induced IL-6 release. J Neuroimmunol 239:44–52. doi:10.1016/j.jneuroim.2011.08.006
Article PubMed CAS Google Scholar
- González-Scarano F, Baltuch G (1999) Microglia as mediators of inflammatory and degenerative diseases. Annu Rev Neurosci 22:219–240. doi:10.1146/annurev.neuro.22.1.219
Article PubMed Google Scholar
- Sailasuta N, Harris K, Tran T, Ross B (2011) Minimally invasive biomarker confirms glial activation present in Alzheimer's disease: a preliminary study. Neuropsychiatr Dis Treat 7:495–499. doi:10.2147/NDT.S23721
Article PubMed CAS Google Scholar
- Barcia C, Ros CM, Annese V, Gómez A, Ros-Bernal F, Aguado-Yera D, Martínez-Pagán ME, de Pablos V, Fernandez-Villalba E, Herrero MT (2011) IFN-γ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson's disease. Cell Death Dis 2:e142. doi:10.1038/cddis.2011.17
Article PubMed CAS Google Scholar
- Appel SH, Zhao W, Beers DR, Henkel JS (2011) The microglial-motoneuron dialogue in ALS. Acta Myol 30:4–8
PubMed CAS Google Scholar
- Mitterauer BJ (2011) Possible role of glia in cognitive impairment in schizophrenia. CNS Neurosci Ther 17:333–344. doi:10.1111/j.1755-5949.2009.00113.x
Article PubMed Google Scholar
- Hinwood M, Morandini J, Day TA, Walker FR (2012) Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cereb Cortex 22:1442–1454
Article PubMed CAS Google Scholar
- Rosano C, Marsland AL, Gianaros PJ (2012) Maintaining brain health by monitoring inflammatory processes: a mechanism to promote successful aging. Aging Dis 3:16–33
PubMed Google Scholar
- Jha MK, Jeon S, Suk K (2012) Glia as a link between neuroinflammation and neuropathic pain. Immune Netw 12:41–47. doi:10.4110/in.2012.12.2.41
Article PubMed Google Scholar
- Carson MJ (2002) Microglia as liaisons between the immune and central nervous systems. Functional implications for multiple sclerosis. Glia 40:218–231. doi:10.1002/glia.10145
Article PubMed Google Scholar
- Chen CC, Grimbaldeston MA, Tsai M, Weissman IL, Galli SJ (2005) Identification of mast cell progenitors in adult mice. Proc Natl Acad Sci USA 102:11408–11413. doi:10.1073/pnas.0504197102
Article PubMed CAS Google Scholar
- Gilfillan AM, Austin SJ, Metcalfe DD (2011) Mast cell biology: introduction and overview. Adv Exp Med Biol 716:2–12. doi:10.1038/ni1158
Article PubMed CAS Google Scholar
- Lambracht-Hall M, Dimitriadou V, Theoharides TC (1990) Migration of mast cells in the developing rat brain. Dev Brain Res 56:151–159. doi:10.1016/0165-3806(90)90077-C
Article CAS Google Scholar
- Silverman AJ, Sutherland AK, Wilhelm M, Silver R (2000) Mast cells migrate from blood to brain. J Neurosci 20:401–408
PubMed CAS Google Scholar
- Engler H, Doenlen R, Engler A, Riether C, Prager G, Niemi MB, Pacheco-López G, Krügel U, Schedlowski M (2011) Acute amygdaloid response to systemic inflammation. Brain Behav Immun 25:1384–1392. doi:10.1016/j.bbi.2011.04.005
Article PubMed CAS Google Scholar
- Moreno B, Jukes JP, Vergara-Irigaray N, Errea O, Villoslada P, Perry VH, Newman TA (2011) Systemic inflammation induces axon injury during brain inflammation. Ann Neurol 70:932–942. doi:10.1002/ana.22550
Article PubMed CAS Google Scholar
- Johnson D, Krenger W (1992) Interactions of mast cells with the nervous system—recent advances. Neurochem Res 17:939–951. doi:10.1007/BF00993271
Article PubMed CAS Google Scholar
- Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142. doi:10.1038/ni1158
Article PubMed CAS Google Scholar
- Wardlaw AJ, Moqbel R, Cromwell O, Kay AB (1986) Platelet-activating factor. A potent chemotactic and chemokinetic factor for human eosinophils. J Clin Invest 78:1701–1706. doi:10.1172/JCI112765
Article PubMed CAS Google Scholar
- Perry VH, Andersson P-B, Gordon G (1993) Macrophages and inflammation in the central nervous system. Trends Neurosci 16:268–273. doi:10.1016/0166-2266(93)90180-T
Article PubMed CAS Google Scholar
- Johnson D, Yasui D, Seeldayers P (1991) An analysis of mast cell frequency in the rodent nervous system: numbers vary between different strains and can be reconstituted in mast cell-deficient mice. J Neuropathol Exp Neurol 50:227–234. doi:10.1097/00005072-19910005-00005
Article PubMed CAS Google Scholar
- Brenner T, Soffer D, Shalit M, Levi-Schaffer F (1994) Mast cells in experimental allergic encephalomyelitis: characterization, distribution in the CNS and in vitro activation by myelin basic protein and neuropeptides. J Neurol Sci 122:210–213. doi:10.1016/0022-510X(94)90300-X
Article PubMed CAS Google Scholar
- Theoharides TC (1990) Mast cells: the immune gate to the brain. Life Sci 46:607–617. doi:10.1016/0024-3205(90)90129-F
Article PubMed CAS Google Scholar
- Rozniecki JJ, Hauser SL, Stein M, Lincoln R, Theoharides TC (1995) Elevated mast cell tryptase in cerebrospinal fluid of multiple sclerosis patients. Ann Neurol 37:63–66. doi:10.1002/ana.410370112
Article PubMed CAS Google Scholar
- Medic N, Vita F, Abbate R, Soranzo MR, Pacor S, Fabbretti E, Borelli V, Zabucchi G (2008) Mast cell activation by myelin through scavenger receptor. J Neuroimmunol 200:27–40. doi:10.1016/j.jneuroim.2008.05.019
Article PubMed CAS Google Scholar
- Skaper SD, Facci L, Romanello S, Leon A (1996) Mast cell activation causes delayed neurodegeneration in mixed hippocampal cultures via the nitric oxide pathway. J Neurochem 66:1157–1166. doi:10.1046/j.1471-4159.1996.66031157.x
Article PubMed CAS Google Scholar
- Theoharides TC, Baloyannis SJ, Manolidis LS (1991) Activated rat peritoneal mast cells can cause syngeneic brain demyelination in vitro. Int J Immunopathol Pharmacol 4:137–144
Google Scholar
- Nautiyal KM, Ribeiro AC, Pfaff DW, Silver R (2008) Brain mast cells link the immune system to anxiety-like behavior. Proc Natl Acad Sci USA 105:18053–18057. doi:10.1073/pnas.0809479105
Article PubMed CAS Google Scholar
- DeLeo JA, Yezierski RP (2001) The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90:1–6. doi:10.1016/S0304-3959(0)00490-5
Article PubMed CAS Google Scholar
- Watkins LR, Milligan ED, Maier SF (2001) Spinal cord glia: new players in pain. Pain 93:201–205. doi:10.1016/S0304-3959(01)00359-1
Article PubMed CAS Google Scholar
- Watkins LR, Milligan ED, Maier SF (2003) Glial proinflammatory cytokines mediate exaggerated pain states: implications for clinical pain. Adv Exp Med Biol 521:1–21
PubMed CAS Google Scholar
- Tozaki-Saitoh H, Tsuda M, Miyata H, Ueda K, Kohsaka S, Inoue K (2008) P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. J Neurosci 28:4949–4956. doi:10.1523/JNEUROSCI.0323-08.2008
Article PubMed CAS Google Scholar
- Burnstock G, Krügel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274. doi:10.1016/j.pneurobio.2011.08.006
Article PubMed CAS Google Scholar
- Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396. doi:10.1016/j.pain.2005.01.002
Article PubMed CAS Google Scholar
- Tsuda M, Kuboyama K, Inoue T, Nagata K, Tozaki-Saitoh H, Inoue K (2009) Behavioral phenotypes of mice lacking purinergic P2X4 receptors in acute and chronic pain assays. Mol Pain 5:28. doi:10.1186/1744-8069-5-28
Article PubMed CAS Google Scholar
- Ji RR, Gereau RW 4th, Malcangio M, Strichartz GR (2009) MAP kinase and pain. Brain Res Rev 60:135–148. doi:10.1016/j.brainresrev.2008.12.011
Article PubMed CAS Google Scholar
- Xanthos DN, Gaderer S, Drdla R, Nuro E, Abramova A, Ellmeier W, Sandkühler J (2011) Central nervous system mast cells in peripheral inflammatory nociception. Mol Pain 7:42. doi:10.1186/1744-8069-7-42
Article PubMed Google Scholar
- Zuo Y, Perkins NM, Tracey DJ, Geczy CL (2003) Inflammation and hyperalgesia induced by nerve injury in the rat: a key role of mast cells. Pain 105:467–479. doi:10.1016/S0304-3959(03)00261-6
Article PubMed Google Scholar
- Levy D, Kainz V, Burstein R, Strassman AM (2012) Mast cell degranulation distinctly activates trigemino-cervical and lumbosacral pain pathways and elicits widespread tactile pain hypersensitivity. Brain Behav Immun 26:311–317. doi:10.1016/j.bbi.2011.09.016
Article PubMed Google Scholar
- Koda H, Mizumura K (2002) Sensitization to mechanical stimulation by inflammatory mediators and by mild burn in canine visceral nociceptors in vitro. J Neurophysiol 87:2043–2051. doi:10.1152/jn.00593.2001
PubMed Google Scholar
- Leon A, Buriani A, Dal Toso R, Fabris M, Romanello S, Aloe L, Levi-Montalcini R (1994) Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci USA 91:3739–3743. doi:10.1073/pnas.91.9.3739
Article PubMed CAS Google Scholar
- Levi-Montalcini R, Skaper SD, Dal Toso R, Petrelli L, Leon A (1996) Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci 19:514–520. doi:10.1016/S0166-2236(96)10058-8
Article PubMed CAS Google Scholar
- Vallières L, Rivest S (1997) Regulation of the genes encoding interleukin-6, its receptor, and gp130 in the rat brain in response to the immune activator lipopolysaccharide and the proinflammatory cytokine interleukin-1β. J Neurochem 69:1668–1683. doi:10.1046/j.1471-4159.1997.69041668.x
Article PubMed Google Scholar
- Leal-Berumen I, Conlon P, Marshall JS (1994) IL-6 production by rat peritoneal mast cells is not necessarily preceded by histamine release and can be induced by bacterial lipopolysaccharide. J Immunol 152:5468–5476
PubMed CAS Google Scholar
- Hayashi R, Xiao W, Kawamato M, Yuge O, Bennett GJ (2011) Systemic glucocorticoid therapy reduces pain and the number of endoneurial tumor necrosis factor-alpha (TNFα)-positive mast cells in rats with a painful peripheral neuropathy. J Pharmacol Sci 106:559–565. doi:10.1254/jphs.FP0072181
Article CAS Google Scholar
- Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68. doi:10.1016/j.jneuroim.2006.11.014
Article PubMed CAS Google Scholar
- Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394. doi:10.1038/nn1997
Article PubMed CAS Google Scholar
- Silver R, Silverman A, Vitkovic L, Lederhendler I (1996) Mast cells in the brain: evidence and functional significance. Trends Neurosci 19:25–31. doi:10.1016/0166-2236(96)81863-7
Article PubMed CAS Google Scholar
- Michaloudi H, Grivas I, Batzios C, Chiotelli M, Papadopoulos G (2003) Parallel development of blood vessels and mast cells in the lateral geniculate nuclei. Brain Res Develop Brain Res 140:269–276. doi:10.1016/S0165-3806(02)00613-2
Article CAS Google Scholar
- Chew LJ, Takanohashi A, Bell M (2006) Microglia and inflammation: impact on developmental brain injuries. Ment Retard Dev Disabil Res Rev 12:105–112. doi:10.1002/mrdd.20102
Article PubMed Google Scholar
- Jin Y, Silverman AJ, Vannucci SJ (2009) Mast cells are early responders after hypoxia-ischemia in immature rat brain. Stroke 40:3107–3112. doi:10.1161/STROKEAHA.109.549691
Article PubMed CAS Google Scholar
- Gordon JR, Galli SJ (1991) Release of both preformed and newly synthesized tumor necrosis factor alpha (TNF-alpha)/cachectin by mouse mast cells stimulated via the Fc epsilon RI. A mechanism for the sustained action of mast cell-derived TNF-alpha during IgE-dependent biological responses. J Exp Med 174:103–107. doi:10.1084/174.1.103
Article PubMed CAS Google Scholar
- Gregersen R, Lambertsen K, Finsen B (2000) Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20:53–65. doi:10.1097/00004647-200001000-00009
Article PubMed CAS Google Scholar
- Hallenbeck JM (2002) The many faces of tumor necrosis factor in stroke. Nat Med 8:1363–1368. doi:10.1038/nm1202-1363
Article PubMed CAS Google Scholar
- Jin Y, Silverman AJ, Vannucci SJ (2007) Mast cell stabilization limits hypoxic-ischemic brain damage in the immature rat. Dev Neurosci 29:373–384. doi:10.1159/000105478
Article PubMed CAS Google Scholar
- Strbian D, Karjalainen-Lindsberg ML, Tatlisumak T, Lindsberg PJ (2006) Cerebral mast cells regulate early ischemic brain swelling and neutrophil accumulation. J Cereb Blood Flow Metab 26:605–612. doi:10.1038/sj.jcbfm.9600228
Article PubMed Google Scholar
- Biran V, Cochois V, Karroubi A, Arrang JM, Charriaut-Marlangue C, Heron A (2008) Stroke induces histamine accumulation and mast cell degranulation in the neonatal rat brain. Brain Pathol 18:1–9. doi:10.1111/j.1750-3639.2007.00092.x
Article PubMed CAS Google Scholar
- Lozada A, Maegele M, Stark H, Neugebauer EM, Panula P (2005) Traumatic brain injury results in mast cell increase and changes in regulation of central histamine receptors. Neuropathol Appl Neurobiol 31:150–162. doi:10.1111/j.1365-2990.2004.00622.x
Article PubMed CAS Google Scholar
- Lindsberg PJ, Strbian D, Karjalainen-Lindsberg ML (2010) Mast cells as early responders in the regulation of acute blood–brain barrier changes after cerebral ischemia and hemorrhage. J Cereb Blood Flow Metab 30:689–702. doi:10.1038/jcbfm.2009.282
Article PubMed Google Scholar
- Mattila OS, Strbian D, Saksi J, Pikkarainen TO, Rantanen V, Tatlisumak T, Lindsberg PJ (2011) Cerebral mast cells mediate blood–brain barrier disruption in acute experimental ischemic stroke through perivascular gelatinase activation. Stroke 42:3600–3605. doi:10.1161/STROKEAHA.111.632224
Article PubMed CAS Google Scholar
- Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81:302–313. doi:10.1002/jnr.20562
Article PubMed CAS Google Scholar
- Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hövelmeyer N, Waisman A, Rülicke T, Prinz M, Priller J, Becher B, Aguzzi A (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11:146–152. doi:10.1038/nm1177
Article PubMed CAS Google Scholar
- Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4:703–713. doi:10.1038/nrn1195
Article PubMed CAS Google Scholar
- Olah M, Amor S, Brouwer N, Vinet J, Eggen B, Biber K, Boddeke HW (2012) Identification of a microglia phenotype supportive of remyelination. Glia 60:306–321. doi:10.1002/glia.21266
Article PubMed Google Scholar
- Secor VH, Secor WE, Gutekunst CA, Brown MA (2000) Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J Exp Med 191:813–822. doi:10.1084/jem.191.5.813
Article PubMed CAS Google Scholar
- Tanzola MB, Robbie-Ryan M, Gutekunst CA, Brown MA (2003) Mast cells exert effects outside the central nervous system to influence experimental allergic encephalomyelitis disease course. J Immunol 171:4385–4391
PubMed CAS Google Scholar
- Bennett JL, Blanchet MR, Zhao L, Zbytnuik L, Antignano F, Gold M, Kubes P, McNagny KM (2009) Bone marrow-derived mast cells accumulate in the central nervous system during inflammation but are dispensable for experimental autoimmune encephalomyelitis pathogenesis. J Immunol 182:5507–5514. doi:10.4049/jimmunol.0801485
Article PubMed CAS Google Scholar
- Wyss-Coray T (2006) Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 12:1005–1015. doi:10.1038/nm1474
PubMed CAS Google Scholar
- Martín-Moreno AM, Reigada D, Ramírez BG, Mechoulam R, Innamorato N, Cuadrado A, de Ceballos ML (2011) Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimer's disease. Mol Pharmacol 79:964–973. doi:10.1124/mol.111.071290
Article PubMed CAS Google Scholar
- Fan R, Xu F, Previti ML, Davis J, Grande AM, Robinson JK, Van Nostrand WE (2007) Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid. J Neurosci 27:3057–3063. doi:10.1523/JNEUROSCI.4371-06.2007
Article PubMed CAS Google Scholar
- Grathwohl SA, Kälin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, Odenthal J, Radde R, Eldh T, Gandy S, Aguzzi A, Staufenbiel M, Mathews PM, Wolburg H, Heppner FL, Jucker M (2009) Formation and maintenance of Alzheimer's disease β-amyloid plaques in the absence of microglia. Nat Neurosci 12:1361–1363. doi:10.1038/nn.2432
Article PubMed CAS Google Scholar
- Lalancette-Hébert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27:2596–2605. doi:10.1523/JNEUROSCI.5360-06.2007
Article PubMed CAS Google Scholar
- Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H, Sawada M (2007) Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 27:488–500. doi:10.1038/sj.jcbfm.9600362
Article PubMed CAS Google Scholar
- Vinet J, van Weering HR, Heinrich A, Kälin RE, Wegner A, Brouwer N, Heppner FL, van Rooijen N, Boddeke HW, Biber K (2012) Neuroprotective function for ramified microglia in hippocampal excitotoxicity. J Neuroinflammation 9:27. doi:10.1186/1742-2094-9-27
Article PubMed CAS Google Scholar
- Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8:e1000527. doi:10.1371/journal.pbio.1000527
Article PubMed CAS Google Scholar
- Lazarini F, Gabellec M-M, Torquet N, Lledo PM (2012) Early activation of microglia triggers long-lasting impairment of adult neurogenesis in the olfactory bulb. J Neurosci 32:3652–3664. doi:10.1523/JNEUROSCI.6394-11.2012
Article PubMed CAS Google Scholar
- Skaper SD, Giusti P, Facci F (2012) Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J 26:3103–3117. doi:10.1096/fj.11-197194
Article PubMed CAS Google Scholar
- Hösli L, Hösli E, Schneider U, Wiget W (1984) Evidence for the existence of histamine H1- and H2-receptors on astrocytes of cultured rat central nervous system. Neurosci Lett 48:287–291. doi:10.1016/0304-3940(84)90052-1
Article PubMed Google Scholar
- Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190. doi:10.1002/glia.1107
Article PubMed CAS Google Scholar
- Kim DY, Jeoung D, Ro JY (2010) Signaling pathways in the activation of mast cells cocultured with astrocytes and colocalization of both cells in experimental allergic encephalomyelitis. J Immunol 185:273–283. doi:10.4049/jimmunol.1000991
Article PubMed CAS Google Scholar
- Kim DY, Hong GU, Ro JY (2011) Signal pathways in astrocytes activated by cross-talk between of astrocytes and mast cells through CD40-CD40L. J Neuroinflammation 8:25. doi:10.1186/1742-2094-8-25
Article PubMed CAS Google Scholar
- Gosselin RD, Suter MR, Ji RR, Decosterd I (2010) Glial cells and chronic pain. Neuroscientist 16:519. doi:10.1177/1073858409360822
Article PubMed CAS Google Scholar
- Suk K, Ock J (2011) Chemical genetics of neuroinflammation: natural and synthetic compounds as microglial inhibitors. Inflammopharmacology 20:151. doi:10.1007/s10787-011-0108-2
Article PubMed CAS Google Scholar
- Oliveira SM, Drewes CC, Silva CR, Trevisan G, Boschen SL, Moreira CG, de Almeida CD, Da Cunha C, Ferreira J (2011) Involvement of mast cells in a mouse model of postoperative pain. Eur J Pharmacol 672:88–95. doi:10.1016/j.ejphar.2011.10.001
Article PubMed CAS Google Scholar
- Ralay Ranaivo H, Craft JM, Hu W, Guo L, Wing LK, Van Eldik LJ, Watterson DM (2006) Glia as a therapeutic target: selective suppression of human amyloid-beta-induced upregulation of brain proinflammatory cytokine production attenuates neurodegeneration. J Neurosci 26:662–670. doi:10.1523/JNEUROSCI.4652-05.2006
Article PubMed CAS Google Scholar
- Pacher P, Bátkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462. doi:10.1124/pr.58.3.2
Article PubMed CAS Google Scholar
- Sepe N, De Petrocellis L, Montanaro F, Cimino G, Di Marzo V (1998) Bioactive long chain N-acylethanolamines in five species of edible bivalve molluscs. Possible implications for mollusc physiology and sea food industry. Biochim Biophys Acta 1389:101–111. doi:10.1016/S0005-2760(97)00132-X
Article PubMed CAS Google Scholar
- Bisogno T, Ventriglia M, Milone A, Mosca M, Cimino G, Di Marzo V (1997) Occurrence and metabolism of anandamide and related acyl-ethanolamides in ovaries of the sea urchin Paracentrotus lividus. Biochim Biophys Acta 1345:338–348. doi:10.1016/S0005-2760(97)00009-X
Article PubMed Google Scholar
- Matias I, Bisogno T, Melck D, Vandenbulcke F, Verger-Bocquet M, De Petrocellis L, Sergheraert C, Breton C, Di Marzo V, Salzet M (2001) Evidence for an endocannabinoid system in the central nervous system of the leech Hirudo medicinalis. Mol Brain Res 87:145–159. doi:10.1016/S0169-328X(00)00290-4
Article PubMed CAS Google Scholar
- Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N (2004) Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem 279:5298–5305. doi:10.1074/jbc.M306642200
Article PubMed CAS Google Scholar
- Coburn AF, Moore LV (1943) Nutrition as conditioning factor in the rheumatic state. Am J Dis Child 65:744–756
Google Scholar
- Coburn AF, Graham CE, Hahinger J (1954) Effect of egg yolk in diets on anaphylactic arthritis (passive Arthus phenomenon) in the guinea pig. J Exp Med 100:425–435. doi:10.1084/jem.100.5.425
Article PubMed CAS Google Scholar
- Kuehl FA Jr, Jacob TA, Ganley OH, Ormond RE, Meisinger MAP (1957) The identification of N-(2-hydroxyethyl)-palmitamide as a naturally occurring anti-inflammatory agent. J Am Chem Soc 79:5577–5578. doi:10.1021/ja01577a066
Article CAS Google Scholar
- Mazzari S, Canella R, Petrelli L, Marcolongo G, Leon L (1996) N-(2-hydroxyethyl)hexadecanamide is orally active in reducing edema formation and inflammatory hyperalgesia by downmodulating mast cell activation. Eur J Pharmacol 300:227–236. doi:10.1016/0014-2999(96)00015-5
Article PubMed CAS Google Scholar
- Calignano A, La Rana G, Giuffrida A, Piomelli D (1998) Control of pain initiation by endogenous cannabinoids. Nature 394:277–281. doi:10.1038/28393
Article PubMed CAS Google Scholar
- Lambert DM, Vandevoorde S, Diependaele G, Govaerts SJ, Robert AR (2001) Anticonvulsant activity of N-palmitoylethanolamide, a putative endocannabinoid, in mice. Epilepsia 42:321–327. doi:10.1046/j.1528-1157.2001.41499.x
Article PubMed CAS Google Scholar
- Petrosino S, Iuvone T, Di Marzo V (2010) N-palmitoyl-ethanolamine: biochemistry and new therapeutic opportunities. Biochimie 92:724–727. doi:10.1016/j.biochi.2010.01.006
Article PubMed CAS Google Scholar
- Skaper SD (2012) Conference report: 1st workshop on “Palmitoylethanolamide: biochemistry, pharmacology and therapeutic use of a pleiotropic anti-inflammatory lipid mediator”. CNS Neurol Disord Drug Targets 11:191. doi:10.2174/187152712800672427
Article PubMed CAS Google Scholar
- Muccioli GG, Stella N (2008) Microglia produce and hydrolyze palmitoylethanolamide. Neuropharmacology 54:16–22. doi:10.1016/j.neuropharm.2007.05.015
Article PubMed CAS Google Scholar
- Facci L, Dal Toso R, Romanello S, Buriani A, Skaper SD, Leon A (1995) Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci USA 92:3376–3380. doi:10.1073/pnas.92.8.3376
Article PubMed CAS Google Scholar
- Cerrato S, Brazis P, della Valle MF, Miolo A, Puigdemont A (2010) Effects of palmitoylethanolamide on immunologically induced histamine, PGD2 and TNFα release from canine skin mast cells. Vet Immunol Immunopathol 133:9–15. doi:10.1016/j.vetimm.2009.06.011
Article PubMed CAS Google Scholar
- Hansen HS, Lauritzen L, Strand AM, Vinggaard AM, Frandsen A, Schousboe A (1997) Characterization of glutamate-induced formation of N-acylphosphatidylethanolamine and N-acylethanolamine in cultured neocortical neurons. J Neurochem 69:753–761. doi:10.1061/j.1471-4159.1997.69020753x
Article PubMed CAS Google Scholar
- Franklin A, Parmentier-Batteur S, Walter L, Greenberg DA, Stella N (2003) Palmitoylethanolamide increases after focal cerebral ischemia and potentiates microglial cell motility. J Neurosci 23:7767–7775
PubMed CAS Google Scholar
- Berger C, Schmid PC, Schabitz WR, Wolf M, Schwab S, Schmid HH (2004) Massive accumulation of N-acylethanolamines after stroke. Cell signalling in acute cerebral ischemia? J Neurochem 88:1159–1167. doi:10.1046/j.1471-4159.2003.02244.x
Article PubMed CAS Google Scholar
- Schäbitz WR, Giuffrida A, Berger C, Aschoff A, Schwaninger M, Schwab S, Piomelli D (2002) Release of fatty acid amides in a patient with hemispheric stroke: a microdialysis study. Stroke 33:2112–2114. doi:10.1161/01.STR.0000023491.63693.18
Article PubMed CAS Google Scholar
- Ghafouri N, Ghafouri B, Larsson B, Turkina MV, Karlsson L, Fowler CJ, Gerdle B (2011) High levels of N-palmitoylethanolamide and N-stearoylethanolamide in microdialysate samples from myalgic trapezius muscle in women. PLoS One 6:e27257. doi:10.1371/journal.pone.0027257
Article PubMed CAS Google Scholar
- Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Makriyannis A, Khanolkar A, Layward L, Fezza F, Bisogno T, Di Marzo V (2001) Endocannabinoids control spasticity in a multiple sclerosis model. FASEB J 15:300–302. doi:10.1096/fj.00-0399fje
PubMed CAS Google Scholar
- Conti S, Costa B, Colleoni M, Parolaro D, Giagnoni G (2002) Antiinflammatory action of endocannabinoid palmitoylethanolamide and the synthetic cannabinoid nabilone in a model of acute inflammation in the rat. Brit J Pharmacol 135:181–187. doi:10.1038/sj.bjp.0704466
Article CAS Google Scholar
- Jaggar SI, Hasnie FS, Sellaturay S, Rice AS (1998) The antihyperalgesic actions of the cannabinoid anandamide and the putative CB2 receptor agonist palmitoylethanolamide in visceral and somatic inflammatory pain. Pain 76:189–199. doi:10.1016/S0304-3959(98)00041-4
Article PubMed CAS Google Scholar
- Calignano A, La Rana G, Piomelli D (2001) Antinociceptive activity of the endogenous fatty acid amide, palmitylethanolamide. Eur J Pharmacol 419:191–198. doi:10.1016/S0014-2999(01)00988-8
Article PubMed CAS Google Scholar
- Costa B, Conti S, Giagnoni G, Colleoni M (2002) Therapeutic effect of the endogenous fatty acid amide, palmitoylethanolamide, in rat acute inflammation: inhibition of nitric oxide and cyclo-oxygenase systems. Br J Pharmacol 137:413–420. doi:10.1038/sj.bjp.0704900
Article PubMed CAS Google Scholar
- Luongo L, Guida F, Boccella S, Bellini G, Gatta L, Rossi F, de Novellis V, Maione S (2013) Palmitoylethanolamide reduces formalin-induced neuropathic-like behaviour through spinal glial/microglial phenotypical changes in mice. CNS Neurol Disord Drug Targets 12:45–54
Article PubMed CAS Google Scholar
- D'Agostino G, La Rana G, Russo R, Sasso O, Iacono A, Esposito E, Mattace Raso G, Cuzzocrea S, Loverme J, Piomelli D, Meli R, Calignano A (2009) Central administration of palmitoylethanolamide reduces hyperalgesia in mice via inhibition of NF-κB nuclear signalling in dorsal root ganglia. Eur J Pharmacol 613:54–59. doi:10.1016/j.ejphar.2009.04.022
Article PubMed CAS Google Scholar
- De Filippis D, Luongo L, Cipriano M, Palazzo E, Cinelli MP, de Novellis V, Maione S, Iuvone T (2011) Palmitoylethanolamide reduces granuloma-induced hyperalgesia by modulation of mast cell activation in rats. Mol Pain 10:3. doi:10.1186/1744-8069-7-3
Article CAS Google Scholar
- Helyes Z, Németh J, Thán M, Bölcskei K, Pintér E, Szolcsányi J (2003) Inhibitory effect of anandamide on resiniferatoxin-induced sensory neuropeptide release in vivo and neuropathic hyperalgesia in the rat. Life Sci 73:2345–2353. doi:10.1016/S0024-3205(03)00651-9
Article PubMed CAS Google Scholar
- Costa B, Comelli F, Bettoni I, Colleoni M, Giagnoni G (2008) The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB1, TRPV1 and PPARγ receptors and neurotrophic factors. Pain 139:541–550. doi:10.1016/j.pain.2008.06.003
Article PubMed CAS Google Scholar
- Garcia-Ovejero D, Arevalo-Martin A, Petrosino S, Docagne F, Hagen C, Bisogno T, Watanabe M, Guaza C, Di Marzo V, Molina-Holgado E (2009) The endocannabinoid system is modulated in response to spinal cord injury in rats. Neurobiol Dis 33:57–71. doi:10.1016/j.nbd.2008.09.015
Article PubMed CAS Google Scholar
- Esposito E, Paterniti I, Mazzon E, Genovese T, Di Paola R, Galuppo M, Cuzzocrea S (2011) Effects of palmitoylethanolamide on release of mast cell peptidases and neurotrophic factors after spinal cord injury. Brain Behav Immun 25:1099–1112. doi:10.1016/j.bbi.2011.02.006
Article PubMed CAS Google Scholar
- Genovese T, Esposito E, Mazzon E, Di Paola R, Meli R, Bramanti P, Piomelli D, Calignano A, Cuzzocrea S (2008) Effects of palmitoylethanolamide on signaling pathways implicated in the development of spinal cord injury. J Pharmacol Exp Ther 326:12–23. doi:10.1124/jpet.108.136903
Article PubMed CAS Google Scholar
- Skaper SD, Buriani A, Dal Toso R, Petrelli L, Romanello S, Facci L, Leon A (1996) The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc Natl Acad Sci USA 93:3984–3989. doi:10.1073/pnas,93.9.3984
Article PubMed CAS Google Scholar
- D'Agostino G, Russo R, Avagliano C, Cristiano C, Meli R, Calignano A (2012) Palmitoylethanolamide protects against the amyloid-β25-35-induced learning and memory impairment in mice, an experimental model of Alzheimer disease. Neuropsychopharmacology 37:1784–1792. doi:10.1038/npp.2012.25
Article PubMed CAS Google Scholar
- Scuderi C, Valenza M, Stecca C, Esposito G, Carratù MR, Steardo L (2012) Palmitoylethanolamide exerts neuroprotective effects in mixed neuroglial cultures and organotypic hippocampal slices via peroxisome proliferator-activated receptor-α. J Neuroinflammation 9:49. doi:10.1186/1742-2094-9-21
Article PubMed CAS Google Scholar
- Rees K, Stowe R, Patel S, Ives N, Breen K, Clarke CE, Ben-Shlomo Y (2011) Non-steroidal anti-inflammatory drugs as disease-modifying agents for Parkinson's disease: evidence from observational studies. Cochrane Database Syst Rev 11, CD008454. doi:10.1002/14651858.CD008454.pub2
PubMed Google Scholar
- Driver JA, Logroscino G, Lu L, Gaziano JM, Kurth T (2011) Use of non-steroidal anti-inflammatory drugs and risk of Parkinson’s disease: nested case–control study. Brit Med J 342:d198. doi:10.1136/bmj.d198
Article PubMed Google Scholar
- Esposito E, Impellizzeri D, Mazzon E, Paterniti I, Cuzzocrea S (2012) Neuroprotective activities of palmitoylethanolamide in an animal model of Parkinson's disease. PLoS One 7(8):e41880. doi:10.1371/journal.pone.0041880
Article PubMed CAS Google Scholar
- Ahmad A, Genovese T, Impellizzeri D, Crupi R, Velardi E, Marino A, Esposito E, Cuzzocrea S (2012) Reduction of ischemic brain injury by administration of palmitoylethanolamide after transient middle cerebral artery occlusion in rats. Brain Res 1477:45–58. doi:10.1016/j.brainres.2012.08.006
Article PubMed CAS Google Scholar
- Ahmad A, Crupi R, Impellizzeri D, Campolo M, Marino A, Esposito E, Cuzzocrea S (2012) Administration of palmitoylethanolamide (PEA) protects the neurovascular unit and reduces secondary injury after traumatic brain injury in mice. Brain Behav Immun 26:1310–1321. doi:10.1016/j.bbi.2012.07.021
Article PubMed CAS Google Scholar
- Lo Verme J, Fu J, Astarita G, La Rana G, Russo R, Calignano A, Piomelli D (2005) The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol Pharmacol 67:15–19. doi:10.1124/mol.104.006353
Article PubMed CAS Google Scholar
- Raso GM, Esposito E, Vitiello S, Iacono A, Santoro A, D'Agostino G, Sasso O, Russo R, Piazza PV, Calignano A, Meli R (2011) Palmitoylethanolamide stimulation induces allopregnanolone synthesis in C6 cells and primary astrocytes: involvement of peroxisome-proliferator activated receptor-α. J Neuroendocrinol 23:591–600. doi:10.1111/j.1365-2826.2011.02152.x
Article PubMed CAS Google Scholar
- Scuderi C, Esposito G, Blasio A, Valenza M, Arietti P, Steardo L Jr, Carnuccio R, De Filippis D, Petrosino S, Iuvone T, Di Marzo V, Steardo L (2011) Palmitoylethanolamide counteracts reactive astrogliosis induced by β-amyloid peptide. J Cell Mol Med 15:2664–2674. doi:10.1111/j.1582-4934.2011.01267.x
Article PubMed CAS Google Scholar
- D'Agostino G, La Rana G, Russo R, Sasso O, Iacono A, Esposito E, Raso GM, Cuzzocrea S, Lo Verme J, Piomelli D, Meli R, Calignano A (2007) Acute intracerebroventricular administration of palmitoylethanolamide, an endogenous peroxisome proliferator-activated receptor-alpha agonist, modulates carrageenan-induced paw edema in mice. J Pharmacol Exp Ther 322:1137–1143. doi:10.1124/jpet.107.123265
Article PubMed CAS Google Scholar
- de Novellis V, Luongo L, Guida F, Cristino L, Palazzo E, Russo R, Marabese I, D'Agostino G, Calignano A, Rossi F, Di Marzo V, Maione S (2012) Effects of intra-ventrolateral periaqueductal grey palmitoylethanolamide on thermoceptive threshold and rostral ventromedial medulla cell activity. Eur J Pharmacol 676:41–50. doi:10.1016/j.ejphar.2011.11.034
Article PubMed CAS Google Scholar
- Smart D, Jonsson KO, Vandevoorde S, Lambert DM, Fowler CJ (2002) ‘Entourage’ effects of N-acyl ethanolamines at human vanilloid receptors. Comparison of effects upon anandamide-induced vanilloid receptor activation and upon anandamide metabolism. Brit J Pharmacol 136:452–458. doi:10.1038/sj.bjp.0704732
Article CAS Google Scholar
- Petrocellis D, Davis JB, Di Marzo V (2001) Palmitoylethanolamide enhances anandamide stimulation of human vanilloid VR1 receptors. FEBS Lett 506:253–256. doi:10.1016/S0014-5793(01)02934-9)
Article PubMed Google Scholar
- Bíró T, Maurer M, Modarres S, Lewin E, Brodie C, Acs G, Acs P, Paus R, Blumberg PM (1998) Characterization of functional vanilloid receptors expressed by mast cells. Blood 91:1332–1340
PubMed Google Scholar
- Kim SR, Kim SU, Oh U, Jin BK (2006) Transient receptor potential vanilloid subtype 1 mediates microglial cell death in vivo and in vitro via Ca2+-mediated mitochondrial damage and cytochrome c release. J Immunol 177:4322–4329
PubMed CAS Google Scholar
- Katsura H, Obata K, Mizushima T, Sakurai J, Kobayashi K, Yamanaka H, Dai Y, Fukuoka T, Sakagami M, Noguchi K (2006) Activation of Src-family kinases in spinal microglia contributes to mechanical hypersensitivity after nerve injury. J Neurosci 26:8680–8690. doi:10.1523/JNEUROSCI.1771-06.2006
Article PubMed CAS Google Scholar
- Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87. doi:10.1038/384083a0
Article PubMed CAS Google Scholar
- Ueda N, Yamanaka K, Yamamoto S (2001) Purification and characterization of an acid amidase selective for N-palmitoylethanolamine, a putative endogenous anti-inflammatory substance. J Biol Chem 276:35552–35557. doi:10.1074/jbc.M106261200
Article PubMed CAS Google Scholar
- Solorzano C, Zhu C, Battista N, Astarita G, Lodola A, Rivara S, Mor M, Russo R, Maccarrone M, Antonietti F, Duranti A, Tontini A, Cuzzocrea S, Tarzia G, Piomelli D (2009) Selective N-acylethanolamine-hydrolyzing acid amidase inhibition reveals a key role for endogenous palmitoylethanolamide in inflammation. Proc Natl Acad Sci USA 106:20966–20971. doi:10.1073/pnas.0907417106
Article PubMed CAS Google Scholar
- Saturnino C, Petrosino S, Ligresti A, Palladino C, De Martino G, Bisogno T, Di Marzo V (2010) Synthesis and biological evaluation of new potential inhibitors of N-acylethanolamine hydrolyzing acid amidase. Bioorg Med Chem Lett 20:1210–1213. doi:10.1016/j.bmcl.2009.11.134
Article PubMed CAS Google Scholar
- Yamano Y, Tsuboi K, Hozaki Y, Takahashi K, Jin XH, Ueda N, Wada A (2012) Lipophilic amines as potent inhibitors of N-acylethanolamine-hydrolyzing acid amidase. Bioorg Med Chem 20:3658–3665. doi:10.1016/j.bmc.2012.03.065
Article PubMed CAS Google Scholar
- Li Y, Yang L, Chen L, Zhu C, Huang R, Zheng X, Qiu Y, Fu J (2012) Design and synthesis of potent N-acylethanolamine-hydrolyzing acid amidase (NAAA) inhibitor as anti-inflammatory compounds. PLoS One 7:8. doi:10.1371/journal.pone.0043023
Google Scholar
- David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12:388–399. doi:10.1038/nrn3053
Article PubMed CAS Google Scholar
- Schäfer T, Starkl P, Allard C, Wolf RM, Schweighoffer T (2010) A granular variant of CD63 is a regulator of repeated human mast cell degranulation. Allergy 65:1242–1255. doi:10.1111/j.1398-9995.2010.02350.x
Article PubMed CAS Google Scholar
- Truini A, Biasiotta A, Di Stefano G, La Cesa S, Leone C, Cartoni C, Federico V, Petrucci M, Cruccu G (2011) Palmitoylethanolamide restores myelinated-fibre function in patients with chemotherapy-induced painful neuropathy. CNS Neurol Disorders Drug Targets 10:916–920. doi:10.2174/187152711799219307
Article CAS Google Scholar
- Kopsky DJ, Hesselink JM (2012) Multimodal stepped care approach with acupuncture and PPAR-α agonist palmitoylethanolamide in the treatment of a patient with multiple sclerosis and central neuropathic pain. Acupunct Med 30:53–55. doi:10.1136/acupmed-2011-010119
Article PubMed Google Scholar
- Hesselink JM, Hekker TA (2012) Therapeutic utility of palmitoylethanolamide in the treatment of neuropathic pain associated with various pathological conditions: a case series. J Pain Res 5:437–442. doi:10.2147/JPR.S32143
Article PubMed CAS Google Scholar
- Hesselink JMK (2012) New targets in pain, non-neuronal cells, and the role of palmitoylethanolamide. The Open Pain Journal 5:12–23
Article CAS Google Scholar
- Clemente S (2012) Amytrophic lateral sclerosis treatment with ultramicronized palmitoylethanolamide: a case report. CNS Neurol Disord Drug Targets 11:933–936. doi:10.2174/1871527311201070933
Article PubMed CAS Google Scholar