Kirn, D., Martuza, R.L. & Zwiebel, J. Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat. Med.7, 781–787 (2001). ArticleCASPubMed Google Scholar
Kirn, D. Replication-selective micro-organisms: fighting cancer with targeted germ warfare. J. Clin. Invest.105, 836–838 (2000). Article Google Scholar
Kirn, D. Replication-selective oncolytic adenoviruses: virotherapy aimed at genetic targets in cancer. Oncogene19, 6660–6668 (2000). ArticleCASPubMed Google Scholar
Bischoff, J.R. et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells [see comments]. Science274, 373–376 (1996). ArticleCASPubMed Google Scholar
Heise, C. et al. ONYX-015, an E1B gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents [see comments]. Nat. Med.3, 639–645 (1997). ArticleCASPubMed Google Scholar
Yu, D., Sakamoto, G. & Henderson, D.R. Identification of the transcriptional regulatory sequences of human kallikrein 2 and their use in the construction of calydon virus 764, an attenuated replication competent adenovirus for prostate cancer therapy. Cancer Res.59, 1498–1504 (1999). CASPubMed Google Scholar
Yu, D., Chen, Y., Seng, M., Dilley, J. & Henderson, D.R. The addition of adenovirus region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res.59, 4200–4203 (1999). CASPubMed Google Scholar
Heise, C. et al. An adenovirus E1A mutant that demonstrates potent and selective antitumoral efficacy. Nat. Med.6, 1134–1139 (2000). ArticleCASPubMed Google Scholar
Freytag, S.O., Rogulski, K.R., Paielli, D.L., Gilbert, J.D. & Kim, J.H. A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy [see comments]. Hum. Gene Ther.9, 1323–1333 (1998). ArticleCASPubMed Google Scholar
Fueyo, J. et al. A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene19, 2–12 (2000). ArticleCASPubMed Google Scholar
Kurihara, T., Brough, D.E., Kovesdi, I. & Kufe, D.W. Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J. Clin. Invest.106, 763–771 (2000). ArticleCASPubMedPubMed Central Google Scholar
Johnson, L. et al. Selectively-replicating adenovirus targeting deregulated E2F activity are potent antitumor agents. Cancer Cell1, 325–337 (2002). ArticleCASPubMed Google Scholar
Jakubczak, J. et al. An oncolytic adenovirus selective for retinoblastoma protein-defective tumors. Cancer Res.63, 1490–1499 (2003). CASPubMed Google Scholar
Doronin, K. et al. Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J. Virol.74, 6147–6155 (2000). ArticleCASPubMedPubMed Central Google Scholar
Ramachandra, M. et al. Re-engineering adenovirus regulatory pathways to enhance oncolytic specificity and efficacy. Nat. Biotechnol.19, 1035–1041 (2001). ArticleCASPubMed Google Scholar
Kirn, D. Clinical research results with _dl_1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: what have we learned? Gene Ther.8, 89–98 (2001). ArticleCASPubMed Google Scholar
DeWeese, T. et al. A phase I trial of CV706, a replication-competent, PSA selective oncolytic adenovirus, for the treatment of locally recurrent prostate cancer following radiation therapy. Cancer Res.61, 7464–7472 (2001). CASPubMed Google Scholar
Nemunaitis, J. et al. Selective replication and oncolysis in p53 mutant tumors with Onyx-015, an E1B-55kDa gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res.60, 6359–6366 (2000). CASPubMed Google Scholar
Nemunaitis, J. et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J. Clin. Oncol.19, 289–298 (2001). ArticleCASPubMed Google Scholar
Vasey, P., Shulman, L., Gore, M., Kirn, D. & Kaye, S. Phase I trial of intraperitoneal Onyx-015 adenovirus in patients with recurrent ovarian carcinoma. J. Clin. Oncol.20, 1562–1569 (2002). CASPubMed Google Scholar
Wold, W.S., Hermiston, T.W. & Tollefson, A.E. Adenovirus proteins that subvert host defenses. Trends Microbiol.2, 437–443 (1994). ArticleCASPubMed Google Scholar
Sparer, T.E. et al. The role of human adenovirus early region 3 proteins (gp19K, 10.4K, 14.5K, and 14.7K) in a murine pneumonia model. J. Virol.70, 2431–2439 (1996). CASPubMedPubMed Central Google Scholar
Rodriguez, R. et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res.57, 2559–2563 (1997). CASPubMed Google Scholar
Heise, C., Williams, A., Xue, S., Propst, M. & Kirn, D. Intravenous administration of ONYX-015, a selectively-replicating adenovirus, induces antitumoral efficacy. Cancer Res.59, 2623–2628 (1999). CASPubMed Google Scholar
Heise, C., Williams, A., Olesch, J. & Kirn, D. Efficacy of a replication-competent adenovirus (ONYX-015) following intratumoral injection: intratumoral spread and distribution effects. Cancer Gene Ther.6, 499–504 (1999). ArticleCASPubMed Google Scholar
Ginsberg, H.S. et al. A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia. Proc. Natl. Acad. Sci. USA88, 1651–1655 (1991). ArticleCASPubMedPubMed Central Google Scholar
Wold, W.S., Tollefson, A.E. & Hermiston, T.W. E3 transcription unit of adenovirus. Curr. Top. Microbiol. Immunol.199, 237–274 (1995). CASPubMed Google Scholar
Dimitrov, T. et al. Adenovirus E3-10.4K/14.5K protein complex inhibits tumor necrosis factor-induced translocation of cytosolic phospholipase A2 to membranes. J. Virol.71, 2830–2837 (1997). CASPubMedPubMed Central Google Scholar
Hermiston, T.W., Tripp, R.A., Sparer, T., Gooding, L.R. & Wold, W.S. Deletion mutation analysis of the adenovirus type 2 E3-gp19K protein: identification of sequences within the endoplasmic reticulum lumenal domain that are required for class I antigen binding and protection from adenovirus-specific cytotoxic T lymphocytes. J. Virol.67, 5289–5298 (1993). CASPubMedPubMed Central Google Scholar
Lichtenstein, D.L., Krajcsi, P., Esteban, D.J., Tollefson, A.E. & Wold, W.S. Adenovirus RIDβ subunit contains a tyrosine residue that is critical for RID-mediated receptor internalization and inhibition of Fas- and TRAIL-induced apoptosis. J. Virol.76, 11329–11342 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gooding, L.R. Regulation of TNF-mediated cell death and inflammation by human adenoviruses. Infect. Agents Dis.3, 106–115 (1994). CASPubMed Google Scholar
Shisler, J., Duerksen, H.P., Hermiston, T.M., Wold, W.S. & Gooding, L.R. Induction of susceptibility to tumor necrosis factor by E1A is dependent on binding to either p300 or p105-Rb and induction of DNA synthesis. J. Virol.70, 68–77 (1996). CASPubMedPubMed Central Google Scholar
Duncan, S. et al. Infection of mouse liver by human adenovirus type 5. J. Gen. Virol.40, 45–61 (1978). ArticleCASPubMed Google Scholar
Ganly, I., Mauntner, V. & Balmain, A. Productive replication of human adenoviruses in mouse epidermal cells. J. Virol.74, 2895–2899 (2000). ArticleCASPubMedPubMed Central Google Scholar
Hayder, H. et al. Adenovirus-induced liver pathology is mediated through TNF receptors I and II but is independent of TNF or lymphotoxin. J. Immunol.163, 1516–1520 (1999). CASPubMed Google Scholar
Efrat, S. et al. Adenovirus early region 3(E3) immunomodulatory genes decrease the incidence of autoimmune diabetes in NOD mice. Diabetes50, 980–984 (2001). ArticleCASPubMed Google Scholar
Tufariello, J., Cho, S. & Horwitz, M.S. The adenovirus E3 14.7-kilodalton protein which inhibits cytolysis by tumor necrosis factor increases the virulence of vaccinia virus in a murine pneumonia model. J. Virol.68, 453–462 (1994). CASPubMedPubMed Central Google Scholar
Schowalter, D.B., Tubb, J.C., Liu, M., Wilson, C.B. & Kay, M.A. Heterologous expression of adenovirus E3-gp19K in an E1a-deleted adenovirus vector inhibits MHC I expression in vitro, but does not prolong transgene expression in vivo. Gene Ther.4, 351–360 (1997). ArticleCASPubMed Google Scholar
Liu, Z.X., Govindarajan, S., Okamoto, S. & Dennert, G. Fas- and tumor necrosis factor receptor 1-dependent but not perforin-dependent pathways cause injury in livers infected with an adenovirus construct in mice. Hepatology31, 665–673 (2000). ArticleCASPubMed Google Scholar
Krajcsi, P. et al. The adenovirus E3-14.7K protein and the E3-10.4K/14.5K complex of proteins, which independently inhibit tumor necrosis factor (TNF)-induced apoptosis, also independently inhibit TNF-induced release of arachidonic acid. J. Virol.70, 4904–4913 (1996). CASPubMedPubMed Central Google Scholar
Gooding, L.R. et al. The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus function together to protect many but not all mouse cell lines against lysis by tumor necrosis factor. J. Virol.65, 4114–4123 (1991). CASPubMedPubMed Central Google Scholar
Hallden, G. et al. Novel immunocompetent models for assessment of oncolytic adenovirus. Molecular Therapy8, 412–424 (2003). ArticleCASPubMed Google Scholar
Duncan, S. et al. Infection of mouse liver by human adenovirus type 5. J. Gen. Virol.40, 45–61 (1978). ArticleCASPubMed Google Scholar
Wold, W.S., Hermiston, T.W. & Tollefson, A.E. Adenovirus proteins that subvert host defenses. Trends Microbiol.2, 437–443 (1994). ArticleCASPubMed Google Scholar
Hayder, H. et al. Adenovirus-induced liver pathology is mediated through TNF receptors I and II but is independent of TNF or lymphotoxin. J. Immunol.163, 1516–1520 (1999). CASPubMed Google Scholar
Krajcsi, P. et al. The adenovirus E3-14.7K protein and the E3-10.4K/14.5K complex of proteins, which independently inhibit tumor necrosis factor (TNF)-induced apoptosis, also independently inhibit TNF-induced release of arachidonic acid. J. Virol.70, 4904–4913 (1996). CASPubMedPubMed Central Google Scholar
Hermiston, T.W., Tripp, R.A., Sparer, T., Gooding, L.R. & Wold, W.S. Deletion mutation analysis of the adenovirus type 2 E3-gp19K protein: identification of sequences within the endoplasmic reticulum lumenal domain that are required for class I antigen binding and protection from adenovirus-specific cytotoxic T lymphocytes. J. Virol.67, 5289–5298 (1993). CASPubMedPubMed Central Google Scholar
Reid, T. et al. Intra-arterial administration of a replication-selective adenovirus (_dl_1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trial. Gene Ther.8, 1618–1626 (2001). ArticleCASPubMedPubMed Central Google Scholar
Day, D.B., Zachariades, N.A. & Gooding, L.R. Cytolysis of adenovirus-infected murine fibroblasts by IFN-γ-primed macrophages is TNF- and contact-dependent. Cell Immunol.157, 223–238 (1994). ArticleCASPubMed Google Scholar
Hermiston, T. Gene delivery from replication-selective viruses: arming guided missiles in the war against cancer. J. Clin. Invest.105, 1169–1175 (2000). ArticleCASPubMedPubMed Central Google Scholar
Khuri, F. et al. A controlled trial of Onyx-015, an E1B gene-deleted adenovirus, in combination with chemotherapy in patients with recurrent head and neck cancer. Nat. Med.6, 879–885 (2000). ArticleCASPubMed Google Scholar
Nagtegaal, I. et al. Local and distant recurrences in rectal cancer patients predicted by the immune response; a histopathological and immunohistochemical study. BMC Cancer1, 7–11 (2001). ArticleCASPubMedPubMed Central Google Scholar