Enhanced neuronal RNAi in C. elegans using SID-1 (original) (raw)
Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature391, 806–811 (1998). CASPubMed Google Scholar
Tabara, H., Grishok, A. & Mello, C.C. RNAi in C. elegans: soaking in the genome sequence. Science282, 430–431 (1998). ArticleCASPubMed Google Scholar
Fraser, A.G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature408, 325–330 (2000). ArticleCASPubMed Google Scholar
Kamath, R.S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature421, 231–237 (2003). ArticleCASPubMed Google Scholar
Winston, W.M., Molodowitch, C. & Hunter, C.P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science295, 2456–2459 (2002). ArticleCASPubMed Google Scholar
Feinberg, E.H. & Hunter, C.P. Transport of dsRNA into cells by the transmembrane protein SID-1. Science301, 1545–1547 (2003). ArticleCASPubMed Google Scholar
Tsang, S.Y., Moore, J.C., Huizen, R.V., Chan, C.W. & Li, R.A. Ectopic expression of systemic RNA interference defective protein in embryonic stem cells. Biochem. Biophys. Res. Commun.357, 480–486 (2007). ArticleCASPubMedPubMed Central Google Scholar
Timmons, L., Court, D.L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene263, 103–112 (2001). ArticleCASPubMed Google Scholar
Tavernarakis, N., Wang, S.L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat. Genet.24, 180–183 (2000). ArticleCASPubMed Google Scholar
Simmer, F. et al. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr. Biol.12, 1317–1319 (2002). ArticleCASPubMed Google Scholar
Lehner, B. et al. Loss of LIN-35, the Caenorhabditis elegans ortholog of the tumor suppressor p105Rb, results in enhanced RNA interference. Genome Biol.7, R4 (2006). ArticlePubMedPubMed Central Google Scholar
Kennedy, S., Wang, D. & Ruvkun, G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature427, 645–649 (2004). ArticleCASPubMed Google Scholar
Schmitz, C., Kinge, P. & Hutter, H. Axon guidance genes identified in a large-scale RNAi screen using the RNAi-hypersensitive Caenorhabditis elegans strain nre-1(hd20) lin-15b(hd126). Proc. Natl. Acad. Sci. USA104, 834–839 (2007). ArticleCASPubMedPubMed Central Google Scholar
Wang, D. et al. Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature436, 593–597 (2005). ArticleCASPubMed Google Scholar
Simmer, F. et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol.1, E12 (2003). ArticlePubMedPubMed Central Google Scholar
Sieburth, D. et al. Systematic analysis of genes required for synapse structure and function. Nature436, 510–517 (2005). ArticleCASPubMed Google Scholar
Chalfie, M. & Au, M. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science243, 1027–1033 (1989). ArticleCASPubMed Google Scholar
Hardin, J., King, R., Thomas-Virnig, C. & Raich, W.B. Zygotic loss of ZEN-4/MKLP1 results in disruption of epidermal morphogenesis in the C. elegans embryo. Dev. Dyn.237, 830–836 (2008). ArticleCASPubMed Google Scholar
Winston, W.M., Sutherlin, M., Wright, A.J., Feinberg, E.H. & Hunter, C.P. Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc. Natl. Acad. Sci. USA104, 10565–10570 (2007). ArticleCASPubMedPubMed Central Google Scholar
Jose, A.M., Smith, J.J. & Hunter, C.P. Export of RNA silencing from C. elegans tissues does not require the RNA channel SID-1. Proc. Natl. Acad. Sci. USA106, 2283–2288 (2009). ArticleCASPubMedPubMed Central Google Scholar
Emtage, L., Gu, G., Hartwieg, E. & Chalfie, M. Extracellular proteins organize the mechanosensory channel complex in C. elegans touch receptor neurons. Neuron44, 795–807 (2004). ArticleCASPubMed Google Scholar
Yigit, E. et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell127, 747–757 (2006). ArticleCASPubMed Google Scholar
Tijsterman, M., May, R.C., Simmer, F., Okihara, K.L. & Plasterk, R.H. Genes required for systemic RNA interference in Caenorhabditis elegans. Curr. Biol.14, 111–116 (2004). ArticleCASPubMed Google Scholar
Ferguson, E.L. & Horvitz, H.R. The multivulva phenotype of certain Caenorhabditis elegans mutants results from defects in two functionally redundant pathways. Genetics123, 109–121 (1989). CASPubMedPubMed Central Google Scholar
Chalfie, M. & Sulston, J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol.82, 358–370 (1981). ArticleCASPubMed Google Scholar
Maduro, M. & Pilgrim, D. Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics141, 977–988 (1995). CASPubMedPubMed Central Google Scholar
Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J.10, 3959–3970 (1991). ArticleCASPubMedPubMed Central Google Scholar
Poyurovsky, M.V. et al. Nucleotide binding by the Mdm2 RING domain facilitates Arf-independent Mdm2 nucleolar localization. Mol. Cell12, 875–887 (2003). ArticleCASPubMed Google Scholar