Tickets to ride: selecting cargo for clathrin-regulated internalization (original) (raw)
Bonifacino, J. S. & Traub, L. M. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem.72, 395–447 (2003). ArticleCASPubMed Google Scholar
Robinson, M. S. Adaptable adaptors for coated vesicles. Trends Cell Biol.14, 167–174 (2004). ArticleCASPubMed Google Scholar
Maldonado-Baez, L. & Wendland, B. Endocytic adaptors: recruiters, coordinators and regulators. Trends Cell Biol.16, 505–513 (2006). ArticleCASPubMed Google Scholar
Leon, S. & Haguenauer-Tsapis, R. Ubiquitin ligase adaptors: regulators of ubiquitylation and endocytosis of plasma membrane proteins. Exp. Cell Res.315, 1574–1583 (2009). ArticleCASPubMed Google Scholar
Vicinanza, M., D'Angelo, G., Di Campli, A. & De Matteis, M. A. Function and dysfunction of the PI system in membrane trafficking. EMBO J.27, 2457–2470 (2008). ArticleCASPubMedPubMed Central Google Scholar
Schmid, E. M. & McMahon, H. T. Integrating molecular and network biology to decode endocytosis. Nature448, 883–888 (2007). ArticleCASPubMed Google Scholar
Robertson, A. S., Smythe, E. & Ayscough, K. R. Functions of actin in endocytosis. Cell. Mol. Life Sci.66, 2049–2065 (2009). ArticleCASPubMed Google Scholar
Mayor, S. & Pagano, R. E. Pathways of clathrin-independent endocytosis. Nature Rev. Mol. Cell Biol.8, 603–612 (2007). ArticleCAS Google Scholar
Matsui, W. & Kirchhausen, T. Stabilization of clathrin coats by the core of the clathrin-associated protein complex AP-2. Biochemistry29, 10791–10798 (1990). ArticleCASPubMed Google Scholar
Collins, B. M., McCoy, A. J., Kent, H. M., Evans, P. R. & Owen, D. J. Molecular architecture and functional model of the endocytic AP2 complex. Cell109, 523–535 (2002). A landmark structural study revealing the molecular basis of AP-2 heterotetrameric core assembly and arrangement and the resulting constraints on cargo recognition. ArticleCASPubMed Google Scholar
Shim, J. & Lee, J. Molecular genetic analysis of apm-2 and aps-2, genes encoding the medium and small chains of the AP-2 clathrin-associated protein complex in the nematode Caenorhabditis elegans. Mol. Cells10, 309–316 (2000). CASPubMed Google Scholar
Austin, C. D. et al. Death-receptor activation halts clathrin-dependent endocytosis. Proc. Natl Acad. Sci. USA103, 10283–10288 (2006). ArticleCASPubMedPubMed Central Google Scholar
Huang, K. M., D'Hondt, K., Riezman, H. & Lemmon, S. K. Clathrin functions in the absence of heterotetrameric adaptors and AP180-related proteins in yeast. EMBO J.18, 3897–3908 (1999). ArticleCASPubMedPubMed Central Google Scholar
Ohno, H. et al. Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science269, 1872–1875 (1995). ArticleCASPubMed Google Scholar
Owen, D. J. & Evans, P. R. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science282, 1327–1332 (1998). References 17 and 18 identify the μ2-subunit as the AP-2 adaptor subunit that physically recognizes YXXØ sorting signals and highlight the structural basis of the recognition process. ArticleCASPubMedPubMed Central Google Scholar
Olusanya, O., Andrews, P. D., Swedlow, J. R. & Smythe, E. Phosphorylation of threonine 156 of the μ2 subunit of the AP2 complex is essential for endocytosis in vitro and in vivo. Curr. Biol.11, 896–900 (2001). Demontrates that YXXØ signal recognition by AP-2 is positively regulated by the phosphorylation of the Thr156 residue of the μ2-subunit. ArticleCASPubMed Google Scholar
Ricotta, D., Conner, S. D., Schmid, S. L., von Figura, K. & Honing, S. Phosphorylation of the AP2 μ subunit by AAK1 mediates high affinity binding to membrane protein sorting signals. J. Cell Biol.156, 791–795 (2002). ArticleCASPubMedPubMed Central Google Scholar
Höning, S. et al. Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2. Mol. Cell18, 519–531 (2005). ArticlePubMedCAS Google Scholar
Semerdjieva, S. et al. Coordinated regulation of AP2 uncoating from clathrin-coated vesicles by rab5 and hRME-6. J. Cell Biol.183, 499–511 (2008). Reports that the timely exit of AP-2 from budded vesicles is supported by RAB5-dependent dephosphorylation of Thr156 and PtdIns(4,5)P2. ArticleCASPubMedPubMed Central Google Scholar
Nesterov, A., Carter, R. E., Sorkina, T., Gill, G. N. & Sorkin, A. Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant μ2 subunit and its effects on endocytosis. EMBO J.18, 2489–2499 (1999). ArticleCASPubMedPubMed Central Google Scholar
Owen, D. J., Setiadi, H., Evans, P. R., McEver, R. P. & Green, S. A. A third specificity-determining site in μ2 adaptin for sequences upstream of YxxΦ sorting motifs. Traffic2, 105–110 (2001). ArticleCASPubMed Google Scholar
Kittler, J. T. et al. Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor γ2 subunit. Proc. Natl Acad. Sci. USA105, 3616–3621 (2008). ArticleCASPubMedPubMed Central Google Scholar
Royle, S. J. et al. Non-canonical YXXGΦ endocytic motifs: recognition by AP2 and preferential utilization in P2X4 receptors. J. Cell Sci.118, 3073–3080 (2005). ArticleCASPubMed Google Scholar
Neil, S. J., Zang, T. & Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature451, 425–430 (2008). ArticleCASPubMed Google Scholar
Van Damme, N. & Guatelli, J. HIV-1 Vpu inhibits accumulation of the envelope glycoprotein within clathrin-coated, Gag-containing endosomes. Cell. Microbiol.10, 1040–1057 (2008). ArticleCASPubMed Google Scholar
Rollason, R., Korolchuk, V., Hamilton, C., Schu, P. & Banting, G. Clathrin-mediated endocytosis of a lipid-raft-associated protein is mediated through a dual tyrosine motif. J. Cell Sci.120, 3850–3858 (2007). ArticleCASPubMed Google Scholar
Masuyama, N. et al. HM1.24 is internalized from lipid rafts by clathrin-mediated endocytosis through interaction with α-adaptin. J. Biol. Chem.284, 15927–15941 (2009). ArticleCASPubMedPubMed Central Google Scholar
Marks, M. S., Woodruff, L., Ohno, H. & Bonifacino, J. S. Protein targeting by tyrosine- and di-leucine-based signals: evidence for distinct saturable components. J. Cell Biol.135, 341–354 (1996). ArticleCASPubMed Google Scholar
Kelly, B. T. et al. A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature456, 976–979 (2008). Crystals of [DE]XXX[LIM] peptides bound to the heterotetrameric AP-2 core reveal how diLeu signals are accommodated by the adaptor and that the entrance of cargoes is regulated. ArticleCASPubMedPubMed Central Google Scholar
Huang, F., Jiang, X. & Sorkin, A. Tyrosine phosphorylation of the β2 subunit of clathrin adaptor complex AP-2 reveals the role of a di-leucine motif in the epidermal growth factor receptor trafficking. J. Biol. Chem.278, 43411–43417 (2003). ArticleCASPubMed Google Scholar
Lee, I., Doray, B., Govero, J. & Kornfeld, S. Binding of cargo sorting signals to AP-1 enhances its association with ADP ribosylation factor 1–GTP. J. Cell Biol.180, 467–472 (2008). ArticleCASPubMedPubMed Central Google Scholar
Pitcher, C., Honing, S., Fingerhut, A., Bowers, K. & Marsh, M. Cluster of differentiation antigen 4 (CD4) endocytosis and adaptor complex binding require activation of the CD4 endocytosis signal by serine phosphorylation. Mol. Biol. Cell10, 677–691 (1999). ArticleCASPubMedPubMed Central Google Scholar
Laguette, N. et al. Nef-induced CD4 endocytosis in human immunodeficiency virus type 1 host cells: role of the p56lck kinase. J. Virol.83, 7117–7128 (2009). ArticleCASPubMedPubMed Central Google Scholar
Craig, H. M., Pandori, M. W. & Guatelli, J. C. Interaction of HIV-1 Nef with the cellular dileucine-based sorting pathway is required for CD4 down-regulation and optimal viral infectivity. Proc. Natl Acad. Sci. USA95, 11229–11234 (1998). ArticleCASPubMedPubMed Central Google Scholar
Lindwasser, O. W. et al. A diacidic motif in human immunodeficiency virus type 1 Nef is a novel determinant of binding to AP-2. J. Virol.82, 1166–1174 (2008). ArticleCASPubMed Google Scholar
Chaudhuri, R., Mattera, R., Lindwasser, O. W., Robinson, M. S. & Bonifacino, J. S. A basic patch on α-adaptin required for binding of HIV-1 Nef and cooperative assembly of a CD4–Nef–AP-2 complex. J. Virol.83, 2518–2530 (2009). ArticleCASPubMedPubMed Central Google Scholar
Loerke, D. et al. Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biol.7, e57 (2009). Detailed computational analysis of coat dynamics and internalization in BS-C-1 cells provides novel mechanistic insight into substages of assembly and cargo capture. ArticlePubMedCAS Google Scholar
Santini, F., Marks, M. S. & Keen, J. H. Endocytic clathrin-coated pit formation is independent of receptor internalization signal levels. Mol. Biol. Cell9, 1177–1194 (1998). ArticleCASPubMedPubMed Central Google Scholar
Ehrlich, M. et al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell118, 591–605 (2004). Time-resolved imaging of surface clathrin coat behaviour in BS-C-1 cells, showing astonishing uniformity of budding structures and correlating bud failure with a paucity of packaged cargo. ArticleCASPubMed Google Scholar
Merrifield, C. J., Perrais, D. & Zenisek, D. Coupling between clathrin-coated-pit invagination, cortactin recruitment, and membrane scission observed in live cells. Cell121, 593–606 (2005). Using an intelligent oscillating pH imaging format, precise entry of cargo molecules into the cell interior is catalogued, repeated budding events from large, long-lived clathrin-coated structures are observed and actin involvement is shown. ArticleCASPubMed Google Scholar
Bellve, K. D. et al. Plasma membrane domains specialized for clathrin-mediated endocytosis in primary cells. J. Biol. Chem.281, 16139–16146 (2006). ArticleCASPubMed Google Scholar
Keyel, P. A., Watkins, S. C. & Traub, L. M. Endocytic adaptor molecules reveal an endosomal population of clathrin by total internal reflection fluorescence microscopy. J. Biol. Chem.279, 13190–13204 (2004). ArticleCASPubMed Google Scholar
Chetrit, D., Ziv, N. & Ehrlich, M. Dab2 regulates clathrin assembly and cell spreading. Biochem. J.418, 701–715 (2008). Article Google Scholar
Warren, R. A., Green, F. A., Stenberg, P. E. & Enns, C. A. Distinct saturable pathways for the endocytosis of different tyrosine motifs. J. Biol. Chem.273, 17056–17063 (1998). ArticleCASPubMed Google Scholar
Motley, A., Bright, N. A., Seaman, M. N. & Robinson, M. S. Clathrin-mediated endocytosis in AP-2-depleted cells. J. Cell Biol.162, 909–918 (2003). Together with reference 50, this report details the somewhat surprising finding that internalization of subsets of clathrin-dependent cargo continues efficiently in cells that have been depleted of AP-2 by RNAi. ArticleCASPubMedPubMed Central Google Scholar
Hinrichsen, L., Harborth, J., Andrees, L., Weber, K. & Ungewickell, E. J. Effect of clathrin heavy chain- and α-adaptin specific small interfering RNAs on endocytic accessory proteins and receptor trafficking in HeLa cells. J. Biol. Chem.278, 45160–45170 (2003). ArticleCASPubMed Google Scholar
Keyel, P. A. et al. A single common portal for clathrin-mediated endocytosis of distinct cargo governed by cargo-selective adaptors. Mol. Biol. Cell17, 4300–4317 (2006). ArticleCASPubMedPubMed Central Google Scholar
Maurer, M. E. & Cooper, J. A. The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH. J. Cell Sci.119, 4235–4246 (2006). ArticleCASPubMed Google Scholar
Eden, E. R., Sun, X. M., Patel, D. D. & Soutar, A. K. Adaptor protein Disabled-2 modulates low density lipoprotein (LDL) receptor synthesis in fibroblasts from patients with autosomal recessive hypercholesterolemia. Hum. Mol. Genet.16, 2751–2759 (2007). ArticleCASPubMed Google Scholar
Moskowitz, H. S., Yokoyama, C. T. & Ryan, T. A. Highly cooperative control of endocytosis by clathrin. Mol. Biol. Cell16, 1769–1776 (2005). ArticleCASPubMedPubMed Central Google Scholar
Owen, D. J., Collins, B. M. & Evans, P. R. Adaptors for clathrin coats: structure and function. Annu. Rev. Cell Dev. Biol.20, 153–191 (2004). ArticleCASPubMed Google Scholar
Stolt, P. C. & Bock, H. H. Modulation of lipoprotein receptor functions by intracellular adaptor proteins. Cell. Signal.18, 1560–1571 (2006). ArticleCASPubMed Google Scholar
Wegener, K. L. et al. Structural basis of integrin activation by talin. Cell128, 171–182 (2007). ArticleCASPubMed Google Scholar
Nishimura, T. & Kaibuchi, K. Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3. Dev. Cell13, 15–28 (2007). ArticleCASPubMed Google Scholar
Chao, W. T. & Kunz, J. Focal adhesion disassembly requires clathrin-dependent endocytosis of integrins. FEBS Lett.583, 1337–1343 (2009). ArticleCASPubMedPubMed Central Google Scholar
Teckchandani, A. et al. Quantitative proteomics identifies a Dab2/integrin module regulating cell migration. J. Cell Biol.86, 99–111 (2009). ArticleCAS Google Scholar
Maginnis, M. S. et al. NPXY motifs in the β1 integrin cytoplasmic tail are required for functional reovirus entry. J. Virol.82, 3181–3191 (2008). ArticleCASPubMedPubMed Central Google Scholar
Eto, D. S., Gordon, H. B., Dhakal, B. K., Jones, T. A. & Mulvey, M. A. Clathrin, AP-2, and the NPXY-binding subset of alternate endocytic adaptors facilitate FimH-mediated bacterial invasion of host cells. Cell. Microbiol.10, 2553–2567 (2008). ArticleCASPubMed Google Scholar
Wendland, B. Epsins: adaptors in endocytosis? Nature Rev. Mol. Cell Biol.3, 971–977 (2002). ArticleCAS Google Scholar
Sorkina, T. et al. RNA interference screen reveals an essential role of Nedd4–2 in dopamine transporter ubiquitination and endocytosis. J. Neurosci.26, 8195–8205 (2006). ArticleCASPubMedPubMed Central Google Scholar
Shih, S. C. et al. Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis. Nature Cell Biol.4, 389–393 (2002). ArticleCASPubMed Google Scholar
Aguilar, R. C., Watson, H. A. & Wendland, B. The yeast Epsin Ent1 is recruited to membranes through multiple independent interactions. J. Biol. Chem.278, 10737–10743 (2003). ArticleCASPubMed Google Scholar
Hicke, L. Protein regulation by monoubiquitin. Nature Rev. Mol. Cell Biol.2, 195–201 (2001). ArticleCAS Google Scholar
Terrell, J., Shih, S., Dunn, R. & Hicke, L. A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol. Cell1, 193–202 (1998). ArticleCASPubMed Google Scholar
Barriere, H. et al. Molecular basis of Ub-dependent internalization of membrane proteins in mammalian cells. Traffic7, 282–297 (2006). ArticleCASPubMed Google Scholar
Hawryluk, M. J. et al. Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein. Traffic7, 262–281 (2006). ArticleCASPubMed Google Scholar
Huang, F., Khvorova, A., Marshall, W. & Sorkin, A. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J. Biol. Chem.279, 16657–16661 (2004). ArticleCASPubMed Google Scholar
Rappoport, J. Z. & Simon, S. M. Endocytic trafficking of activated EGFR is AP-2 dependent and occurs through preformed clathrin spots. J. Cell Sci.122, 1301–1305 (2009). ArticleCASPubMedPubMed Central Google Scholar
Huang, F., Goh, L. K. & Sorkin, A. EGF receptor ubiquitination is not necessary for its internalization. Proc. Natl Acad. Sci. USA104, 16904–16909 (2007). ArticleCASPubMedPubMed Central Google Scholar
Huang, F., Kirkpatrick, D., Jiang, X., Gygi, S. & Sorkin, A. Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol. Cell21, 737–748 (2006). ArticleCASPubMed Google Scholar
Kazazic, M. et al. Epsin 1 is involved in recruitment of ubiquitinated EGF receptors into clathrin-coated pits. Traffic10, 235–245 (2009). ArticleCASPubMed Google Scholar
Duncan, L. M. et al. Lysine-63 linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO J.25, 1635–1645 (2006). ArticleCASPubMedPubMed Central Google Scholar
Galan, J. M. & Haguenauer-Tsapis, R. Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J.16, 5847–5854 (1997). ArticleCASPubMedPubMed Central Google Scholar
Springael, J. Y., Galan, J. M., Haguenauer-Tsapis, R. & Andre, B. NH4+-induced down-regulation of the Saccharomyces cerevisiae Gap1p permease involves its ubiquitination with lysine-63-linked chains. J. Cell Sci.112 1375–1383 (1999). ArticleCASPubMed Google Scholar
Paiva, S. et al. Glucose-induced ubiquitylation and endocytosis of the yeast JEN1 transporter: role of K63-linked ubiquitin chains. J. Biol. Chem.284, 19228–19236 (2009). ArticleCASPubMedPubMed Central Google Scholar
Geetha, T., Jiang, J. & Wooten, M. W. Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling. Mol. Cell20, 301–312 (2005). ArticleCASPubMed Google Scholar
Sims, J. J. & Cohen, R. E. Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Mol. Cell33, 775–783 (2009). References 82 and 83 nicely explain how suitably positioned tandem UIMs are selective for Lys63-linked ubiquitin chains. ArticleCASPubMedPubMed Central Google Scholar
Sato, Y. et al. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J. 18 Jun 2009 (doi:10.1038/emboj.2009.160). ArticleCASPubMedPubMed Central Google Scholar
Belgareh-Touze, N. et al. Versatile role of the yeast ubiquitin ligase Rsp5p in intracellular trafficking. Biochem. Soc. Trans.36, 791–796 (2008). ArticleCASPubMed Google Scholar
Kim, H. C. & Huibregtse, J. M. Polyubiquitination by HECT E3s and the determinants of chain type specificity. Mol. Cell. Biol.29, 3307–3318 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kee, Y., Lyon, N. & Huibregtse, J. M. The Rsp5 ubiquitin ligase is coupled to and antagonized by the Ubp2 deubiquitinating enzyme. EMBO J.24, 2414–2424 (2005). ArticleCASPubMedPubMed Central Google Scholar
Shenoy, S. K. et al. β-Arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Proc. Natl Acad. Sci. USA106, 6650–6655 (2009). ArticleCASPubMedPubMed Central Google Scholar
Kee, Y., Munoz, W., Lyon, N. & Huibregtse, J. M. The Ubp2 deubiquitinating enzyme modulates Rsp5-dependent K63-linked polyubiquitin conjugates in Saccharomyces cerevisiae. J. Biol. Chem.281, 36724–36731 (2006). ArticleCASPubMed Google Scholar
Saeki, Y. et al. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J.28, 359–371 (2009). ArticleCASPubMedPubMed Central Google Scholar
Nikko, E., Sullivan, J. A. & Pelham, H. R. Arrestin-like proteins mediate ubiquitination and endocytosis of the yeast metal transporter Smf1. EMBO Rep.9, 1216–1221 (2008). ArticleCASPubMedPubMed Central Google Scholar
Lin, C. H., MacGurn, J. A., Chu, T., Stefan, C. J. & Emr, S. D. Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell135, 714–725 (2008). References 90 and 91 define the role of the yeast β-arrestin-related ARTs in guiding the Rsp5 E3 ligase to transmembrane cargoes to facilitate their ubiquitin-dependent internalization. ArticleCASPubMed Google Scholar
Lundh, F. et al. Molecular mechanisms controlling phosphate-induced downregulation of the yeast Pho84 phosphate transporter. Biochemistry48, 4497–4505 (2009). ArticleCASPubMed Google Scholar
Marchese, A., Paing, M. M., Temple, B. R. & Trejo, J. G protein-coupled receptor sorting to endosomes and lysosomes. Annu. Rev. Pharmacol. Toxicol.48, 601–629 (2008). ArticleCASPubMedPubMed Central Google Scholar
Edeling, M. A. et al. Molecular switches involving the AP-2 β2 appendage regulate endocytic cargo selection and clathrin coat assembly. Dev. Cell10, 329–342 (2006). ArticleCASPubMed Google Scholar
Burtey, A. et al. The conserved isoleucine-valine-phenylalanine motif couples activation state and endocytic functions of β-arrestins. Traffic8, 914–931 (2007). References 95 and 96 reveal that the AP-2-binding sequence in β-arrestins normally contributes to maintaining the basal conformation of the CLASP but becomes active when a phosphorylated GPCR is bound. ArticleCASPubMed Google Scholar
Santini, F., Gaidarov, I. & Keen, J. H. G protein-coupled receptor/arrestin3 modulation of the endocytic machinery. J. Cell Biol.156, 665–676 (2002). ArticleCASPubMedPubMed Central Google Scholar
Scott, M. G., Benmerah, A., Muntaner, O. & Marullo, S. Recruitment of activated G protein-coupled receptors to pre-existing clathrin-coated pits in living cells. J. Biol. Chem.277, 3552–3559 (2002). ArticleCASPubMed Google Scholar
Milano, S. K., Pace, H. C., Kim, Y. M., Brenner, C. & Benovic, J. L. Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis. Biochemistry41, 3321–3328 (2002). ArticleCASPubMed Google Scholar
Pryor, P. R. et al. Molecular basis for the sorting of the SNARE VAMP7 into endocytic clathrin-coated vesicles by the ArfGAP Hrb. Cell134, 817–827 (2008). ArticleCASPubMedPubMed Central Google Scholar
Chaineau, M., Danglot, L., Proux-Gillardeaux, V. & Galli, T. Role of Hrb in clathrin dependent endocytosis. J. Biol. Chem.283, 34365–34373 (2008). ArticleCASPubMedPubMed Central Google Scholar
Jung, N. et al. Molecular basis of synaptic vesicle cargo recognition by the endocytic sorting adaptor stonin 2. J. Cell Biol.179, 1497–1510 (2007). ArticleCASPubMedPubMed Central Google Scholar
Ghosh, P., Dahms, N. M. & Kornfeld, S. Mannose 6-phosphate receptors: new twists in the tale. Nature Rev. Mol. Cell Biol.4, 202–213 (2003). ArticleCAS Google Scholar
Schlüter, T., Knauth, P., Wald, S., Boland, S. & Bohnensack, R. Numb3 is an endocytosis adaptor for the inflammatory marker P-selectin. Biochem. Biophys. Res. Commun.379, 909–913 (2009). ArticlePubMedCAS Google Scholar
Li, Y., Lu, W., Marzolo, M. P. & Bu, G. Differential functions of members of the low density lipoprotein receptor family suggested by their distinct endocytosis rates. J. Biol. Chem.276, 18000–18006 (2001). A quantitative study showing that different members of the LDL receptor superfamily have significantly different internalization rates depending on the mix of sorting signals present in the cytosolic domain. ArticleCASPubMed Google Scholar
Pandey, M. S., Harris, E. N., Weigel, J. A. & Weigel, P. H. The cytoplasmic domain of the hyaluronan receptor for endocytosis (HARE) contains multiple endocytic motifs targeting coated pit-mediated internalization. J. Biol. Chem.283, 21453–21461 (2008). ArticleCASPubMedPubMed Central Google Scholar
Wolfe, B. L., Marchese, A. & Trejo, J. Ubiquitination differentially regulates clathrin-dependent internalization of protease-activated receptor-1. J. Cell Biol.177, 905–916 (2007). ArticleCASPubMedPubMed Central Google Scholar
Kumar, K. G. et al. Site-specific ubiquitination exposes a linear motif to promote interferon-α receptor endocytosis. J. Cell Biol.179, 935–950 (2007). ArticleCASPubMedPubMed Central Google Scholar
McCaffery, G., Welker, J., Scott, J., van der Salm, L. & Grimes, M. L. High-resolution fractionation of signaling endosomes containing different receptors. Traffic10, 938–950 (2009). ArticleCAS Google Scholar
Gould, G. W. & Lippincott-Schwartz, J. New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nature Rev. Mol. Cell Biol.10, 287–292 (2009). ArticleCAS Google Scholar
Castillon, G. A., Watanabe, R., Taylor, M., Schwabe, T. M. & Riezman, H. Concentration of GPI-anchored proteins upon ER exit in yeast. Traffic10, 186–200 (2009). ArticleCASPubMed Google Scholar
Lakadamyali, M., Rust, M. J. & Zhuang, X. Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell124, 997–1009 (2006). ArticleCASPubMedPubMed Central Google Scholar
Leonard, D. et al. Sorting of EGF and transferrin at the plasma membrane and by cargo-specific signaling to EEA1-enriched endosomes. J. Cell Sci.121, 3445–3458 (2008). ArticleCASPubMed Google Scholar
Tosoni, D. et al. TTP specifically regulates the internalization of the transferrin receptor. Cell123, 875–888 (2005). ArticleCASPubMed Google Scholar
Mundell, S. J., Luo, J., Benovic, J. L., Conley, P. B. & Poole, A. W. Distinct clathrin-coated pits sort different G protein-coupled receptor cargo. Traffic7, 1420–1431 (2006). ArticleCASPubMed Google Scholar
Puthenveedu, M. A. & von Zastrow, M. Cargo regulates clathrin-coated pit dynamics. Cell127, 113–124 (2006). ArticleCASPubMed Google Scholar
Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell122, 735–749 (2005). A beautiful live-cell imaging study showing the temporal relationship between Rab proteins and maturing, cargo-laden endosomes. ArticleCASPubMed Google Scholar
Driskell, O. J., Mironov, A., Allan, V. J. & Woodman, P. G. Dynein is required for receptor sorting and the morphogenesis of early endosomes. Nature Cell Biol.9, 113–120 (2007). ArticleCASPubMed Google Scholar
Wang, W. & Struhl, G. Drosophila Epsin mediates a select endocytic pathway that DSL ligands must enter to activate Notch. Development131, 5367–5380 (2004). ArticleCASPubMed Google Scholar
Morris, S. M. & Cooper, J. A. Disabled-2 colocalizes with the LDLR in clathrin-coated pits and interacts with AP-2. Traffic2, 111–123 (2001). ArticleCASPubMed Google Scholar
Rappoport, J. Z., Kemal, S., Benmerah, A. & Simon, S. M. Dynamics of clathrin and adaptor proteins during endocytosis. Am. J. Physiol. Cell Physiol.291, C1072–C1081 (2006). ArticleCASPubMed Google Scholar
Sorensen, E. B. & Conner, S. D. AAK1 regulates numb function at an early step in clathrin-mediated endocytosis. Traffic9, 1791–1800 (2008). ArticleCASPubMed Google Scholar
Tokumitsu, H. et al. Phosphorylation of Numb regulates its interaction with the clathrin-associated adaptor AP-2. FEBS Lett.580, 5797–5801 (2006). ArticleCASPubMed Google Scholar
Schmid, E. M. et al. Role of the AP2 β-appendage hub in recruiting partners for clathrin coated vesicle assembly. PLoS Biol.4, e262 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
N'Diaye, E. N. et al. The ubiquitin-like protein PLIC-2 is a negative regulator of G protein-coupled receptor endocytosis. Mol. Biol. Cell19, 1252–1260 (2008). ArticleCASPubMedPubMed Central Google Scholar
Herpers, B. & Rabouille, C. mRNA localization and ER-based protein sorting mechanisms dictate the use of transitional endoplasmic reticulum-Golgi units involved in Gurken transport in Drosophila oocytes. Mol. Biol. Cell15, 5306–5317 (2004). ArticleCASPubMedPubMed Central Google Scholar
Ge, L. et al. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metab.7, 508–519 (2008). ArticleCASPubMed Google Scholar
Conner, S. D. & Schmid, S. L. Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis. J. Cell Biol.156, 921–929 (2002). ArticleCASPubMedPubMed Central Google Scholar
Jackson, A. P. et al. Clathrin promotes incorporation of cargo into coated pits by activation of the AP2 adaptor μ2 kinase. J. Cell Biol.163, 231–236 (2003). ArticleCASPubMedPubMed Central Google Scholar
Conner, S. D., Schroter, T. & Schmid, S. L. AAK1 mediated μ2 phosphorylation is stimulated by assembled clathrin. Traffic4, 885–890 (2003). ArticleCASPubMed Google Scholar
Hinrichsen, L., Meyerholz, A., Groos, S. & Ungewickell, E. J. Bending a membrane: how clathrin affects budding. Proc. Natl Acad. Sci. USA103, 8715–8720 (2006). ArticleCASPubMedPubMed Central Google Scholar
Roux, A., Uyhazi, K., Frost, A. & De Camilli, P. GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission. Nature441, 528–531 (2006). ArticleCASPubMed Google Scholar
Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell99, 179–188 (1999). ArticleCASPubMed Google Scholar
Yu, A. et al. Association of Dishevelled with the clathrin AP-2 adaptor is required for Frizzled endocytosis and planar cell polarity signaling. Dev. Cell12, 129–141 (2007). ArticleCASPubMedPubMed Central Google Scholar
Janvier, K. et al. Recognition of dileucine-based sorting signals from HIV-1 Nef and LIMP-II by the AP-1 γ-σ1 and AP-3 δ-σ3 hemicomplexes. J. Cell Biol.163, 1281–1290 (2003). ArticleCASPubMedPubMed Central Google Scholar
Mason, A. K., Jacobs, B. E. & Welling, P. A. AP-2-dependent internalization of potassium channel Kir2.3 is driven by a novel di-hydrophobic signal. J. Biol. Chem.283, 5973–5984 (2008). ArticleCASPubMed Google Scholar
Hicke, L. & Dunn, R. Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu. Rev. Cell Dev. Biol.19, 141–172 (2003). ArticleCASPubMed Google Scholar