Effects of tumor-suppressor lysyl oxidase propeptide on prostate cancer xenograft growth and its direct interactions with DNA repair pathways (original) (raw)
Contente S, Kenyon K, Rimoldi D, Friedman RM . Expression of gene rrg is associated with reversion of NIH 3T3 transformed by LTR-c-H-ras. Science 1990; 249: 796–798. ArticleCASPubMed Google Scholar
Panchenko MV, Stetler-Stevenson WG, Trubetskoy OV, Gacheru SN, Kagan HM . Metalloproteinase activity secreted by fibrogenic cells in the processing of prolysyl oxidase. Potential role of procollagen C-proteinase. J Biol Chem 1996; 271: 7113–7119. ArticleCASPubMed Google Scholar
Uzel MI, Scott IC, Babakhanlou-Chase H, Palamakumbura AH, Pappano WN, Hong HH et al. Multiple bone morphogenetic protein 1-related mammalian metalloproteinases process pro-lysyl oxidase at the correct physiological site and control lysyl oxidase activation in mouse embryo fibroblast cultures. J Biol Chem 2001; 276: 22537–22543. ArticleCASPubMed Google Scholar
Barker HE, Cox TR, Erler JT . The rationale for targeting the LOX family in cancer. Nat Rev Cancer 2012; 12: 540–552. ArticleCASPubMed Google Scholar
Min C, Kirsch KH, Zhao Y, Jeay S, Palamakumbura AH, Trackman PC et al. The tumor suppressor activity of the lysyl oxidase propeptide reverses the invasive phenotype of Her-2/neu-driven breast cancer. Cancer Res 2007; 67: 1105–1112. ArticleCASPubMed Google Scholar
Min C, Yu Z, Kirsch KH, Zhao Y, Vora SR, Trackman PC et al. A loss-of-function polymorphism in the propeptide domain of the LOX gene and breast cancer. Cancer Res 2009; 69: 6685–6693. ArticleCASPubMedPubMed Central Google Scholar
Palamakumbura AH, Jeay S, Guo Y, Pischon N, Sommer P, Sonenshein GE et al. The propeptide domain of lysyl oxidase induces phenotypic reversion of ras-transformed cells. J Biol Chem 2004; 279: 40593–40600. ArticleCASPubMed Google Scholar
Min C, Zhao Y, Romagnoli M, Trackman PC, Sonenshein GE, Kirsch KH . Lysyl oxidase propeptide sensitizes pancreatic and breast cancer cells to doxorubicin-induced apoptosis. J Cell Biochem 2010; 111: 1160–1168. ArticleCASPubMedPubMed Central Google Scholar
Palamakumbura AH, Vora SR, Nugent MA, Kirsch KH, Sonenshein GE, Trackman PC . Lysyl oxidase propeptide inhibits prostate cancer cell growth by mechanisms that target FGF-2-cell binding and signaling. Oncogene 2009; 28: 3390–3400. ArticleCASPubMedPubMed Central Google Scholar
Wu M, Min C, Wang X, Yu Z, Kirsch KH, Trackman PC et al. Repression of BCL2 by the tumor suppressor activity of the lysyl oxidase propeptide inhibits transformed phenotype of lung and pancreatic cancer cells. Cancer Res 2007; 67: 6278–6285. ArticleCASPubMed Google Scholar
Agra N, Cidre F, Garcia-Garcia L, de la Parra J, Alonso J . Lysyl oxidase is downregulated by the EWS/FLI1 oncoprotein and its propeptide domain displays tumor supressor activities in ewing sarcoma cells. PLoS One 2013; 8: e66281. ArticleCASPubMedPubMed Central Google Scholar
Zheng Y, Wang X, Wang H, Yan W, Zhang Q, Chang X . Expression of the lysyl oxidase propeptide in hepatocellular carcinoma and its clinical relevance. Oncol Rep 2014; 31: 1669–1676. ArticleCASPubMed Google Scholar
Bais MV, Nugent MA, Stephens DN, Sume SS, Kirsch KH, Sonenshein GE et al. Recombinant lysyl oxidase propeptide protein inhibits growth and promotes apoptosis of pre-existing murine breast cancer xenografts. PLoS One 2012; 7: e31188. ArticleCASPubMedPubMed Central Google Scholar
Spalding AC, Jotte RM, Scheinman RI, Geraci MW, Clarke P, Tyler KL et al. TRAIL and inhibitors of apoptosis are opposing determinants for NF-kappaB-dependent, genotoxin-induced apoptosis of cancer cells. Oncogene 2002; 21: 260–271. ArticleCASPubMed Google Scholar
Curtin NJ . DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 2012; 12: 801–817. ArticleCASPubMed Google Scholar
Sarasin A, Kauffmann A . Overexpression of DNA repair genes is associated with metastasis: a new hypothesis. Mutat Res 2008; 659: 49–55. ArticleCASPubMed Google Scholar
Kauffmann A, Rosselli F, Lazar V, Winnepenninckx V, Mansuet-Lupo A, Dessen P et al. High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene 2008; 27: 565–573. ArticleCASPubMed Google Scholar
Martinez-Marignac VL, Rodrigue A, Davidson D, Couillard M, Al-Moustafa AE, Abramovitz M et al. The effect of a DNA repair gene on cellular invasiveness: XRCC3 over-expression in breast cancer cells. PLoS One 2011; 6: e16394. ArticleCASPubMedPubMed Central Google Scholar
Lee JH, Paull TT . Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 2004; 304: 93–96. ArticleCASPubMed Google Scholar
Stolz A, Ertych N, Bastians H . Tumor suppressor CHK2: regulator of DNA damage response and mediator of chromosomal stability. Clin Cancer Res 2011; 17: 401–405. ArticleCASPubMed Google Scholar
Buscemi G, Carlessi L, Zannini L, Lisanti S, Fontanella E, Canevari S et al. DNA damage-induced cell cycle regulation and function of novel Chk2 phosphoresidues. Mol Cell Biol 2006; 26: 7832–7845. ArticleCASPubMedPubMed Central Google Scholar
Berlier JE, Rothe A, Buller G, Bradford J, Gray DR, Filanoski BJ et al. Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. J Histochem Cytochem 2003; 51: 1699–1712. ArticleCASPubMed Google Scholar
Vora SR, Guo Y, Stephens DN, Salih E, Vu ED, Kirsch KH et al. Characterization of recombinant lysyl oxidase propeptide. Biochemistry 2010; 49: 2962–2972. ArticleCASPubMed Google Scholar
Delia D, Fontanella E, Ferrario C, Chessa L, Mizutani S . DNA damage-induced cell-cycle phase regulation of p53 and p21waf1 in normal and ATM-defective cells. Oncogene 2003; 22: 7866–7869. ArticleCASPubMed Google Scholar
Bakkenist CJ, Kastan MB . DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003; 421: 499–506. ArticleCASPubMed Google Scholar
Ritter M . Rationale, conduct, and outcome using hypofractionated radiotherapy in prostate cancer. Semin Radiat Oncol 2008; 18: 249–256. ArticlePubMedPubMed Central Google Scholar
Oxnard GR . Strategies for overcoming acquired resistance to epidermal growth factor receptor: targeted therapies in lung cancer. Arch Pathol Lab Med 2012; 136: 1205–1209. ArticleCASPubMed Google Scholar
Pallis A, Briasoulis E, Linardou H, Papadimitriou C, Bafaloukos D, Kosmidis P et al. Mechanisms of resistance to epidermal growth factor receptor tyrosine kinase inhibitors in patients with advanced non-small-cell lung cancer: clinical and molecular considerations. Curr Med Chem 2011; 18: 1613–1628. ArticleCASPubMed Google Scholar
Neel DS, Bivona TG . Secrets of drug resistance in NSCLC exposed by new molecular definition of EMT. Clin Cancer Res 2013; 19: 3–5. ArticleCASPubMed Google Scholar
Matos CS, de Carvalho AL, Lopes RP, Marques MP . New strategies against prostate cancer—Pt(II)-based chemotherapy. Curr Med Chem 2012; 19: 4678–4687. ArticleCASPubMed Google Scholar
Sato S, Trackman PC, Maki JM, Myllyharju J, Kirsch KH, Sonenshein GE . The Ras signaling inhibitor LOX-PP interacts with Hsp70 and c-Raf to reduce Erk activation and transformed phenotype of breast cancer cells. Mol Cell Biol 2011; 31: 2683–2695. ArticleCASPubMedPubMed Central Google Scholar
Sato S, Zhao Y, Imai M, Simister PC, Feller SM, Trackman PC et al. Inhibition of CIN85-mediated invasion by a novel SH3 domain binding motif in the lysyl oxidase propeptide. PLoS One 2013; 8: e77288. ArticleCASPubMedPubMed Central Google Scholar
Zhao Y, Min C, Vora SR, Trackman PC, Sonenshein GE, Kirsch KH . The lysyl oxidase pro-peptide attenuates fibronectin-mediated activation of focal adhesion kinase and p130Cas in breast cancer cells. J Biol Chem 2009; 284: 1385–1393. ArticleCASPubMedPubMed Central Google Scholar
Palamakumbura AH, Sommer P, Trackman PC . Autocrine growth factor regulation of lysyl oxidase expression in transformed fibroblasts. J Biol Chem 2003; 278: 30781–30787. ArticleCASPubMed Google Scholar
Sanchez-Morgan N, Kirsch KH, Trackman PC, Sonenshein GE . The lysyl oxidase propeptide interacts with the receptor-type protein tyrosine phosphatase kappa and inhibits beta-catenin transcriptional activity in lung cancer cells. Mol Cell Biol 2011; 31: 3286–3297. ArticleCASPubMedPubMed Central Google Scholar
Shiloh Y, Ziv Y . The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 2013; 14: 197–210. ArticleCASPubMed Google Scholar
Bhatti S, Kozlov S, Farooqi AA, Naqi A, Lavin M, Khanna KK . ATM protein kinase: the linchpin of cellular defenses to stress. Cell Mol Life Sci 2011; 68: 2977–3006. ArticleCASPubMed Google Scholar
Mok MT, Henderson BR . Three-dimensional imaging reveals the spatial separation of gammaH2AX-MDC1-53BP1 and RNF8-RNF168-BRCA1-A complexes at ionizing radiation-induced foci. Radiother Oncol 2012; 103: 415–420. ArticleCASPubMed Google Scholar
Choudhury A, Cuddihy A, Bristow RG . Radiation and new molecular agents part I: targeting ATM-ATR checkpoints, DNA repair, and the proteasome. Semin Radiat Oncol 2006; 16: 51–58. ArticlePubMed Google Scholar
Eastman A . Cell cycle checkpoints and their impact on anticancer therapeutic strategies. J Cell Biochem 2004; 91: 223–231. ArticleCASPubMed Google Scholar
Rainey MD, Charlton ME, Stanton RV, Kastan MB . Transient inhibition of ATM kinase is sufficient to enhance cellular sensitivity to ionizing radiation. Cancer Res 2008; 68: 7466–7474. ArticleCASPubMedPubMed Central Google Scholar
Lapenna S, Giordano A . Cell cycle kinases as therapeutic targets for cancer. Nat Rev Drug Discov 2009; 8: 547–566. ArticleCASPubMed Google Scholar
Carlessi L, Buscemi G, Larson G, Hong Z, Wu JZ, Delia D . Biochemical and cellular characterization of VRX0466617, a novel and selective inhibitor for the checkpoint kinase Chk2. Mol Cancer Ther 2007; 6: 935–944. ArticleCASPubMed Google Scholar
Jobson AG, Cardellina JH 2nd, Scudiero D, Kondapaka S, Zhang H, Kim H et al. Identification of a Bis-guanylhydrazone [4,4'-Diacetyldiphenylurea-bis(guanylhydrazone); NSC 109555] as a novel chemotype for inhibition of Chk2 kinase. Mol Pharmacol 2007; 72: 876–884. ArticleCASPubMed Google Scholar
Hopfner KP, Karcher A, Craig L, Woo TT, Carney JP, Tainer JA . Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 2001; 105: 473–485. ArticleCASPubMed Google Scholar
Usui T, Ohta T, Oshiumi H, Tomizawa J, Ogawa H, Ogawa T . Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 1998; 95: 705–716. ArticleCASPubMed Google Scholar
Lee JH, Ghirlando R, Bhaskara V, Hoffmeyer MR, Gu J, Paull TT . Regulation of Mre11/Rad50 by Nbs1: effects on nucleotide-dependent DNA binding and association with ataxia-telangiectasia-like disorder mutant complexes. J Biol Chem 2003; 278: 45171–45181. ArticleCASPubMed Google Scholar
Olson E, Nievera CJ, Liu E, Lee AY, Chen L, Wu X . The Mre11 complex mediates the S-phase checkpoint through an interaction with replication protein A. Mol Cell Biol 2007; 27: 6053–6067. ArticleCASPubMedPubMed Central Google Scholar
Buis J, Wu Y, Deng Y, Leddon J, Westfield G, Eckersdorff M et al. Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation. Cell 2008; 135: 85–96. ArticleCASPubMedPubMed Central Google Scholar
Williams RS, Moncalian G, Williams JS, Yamada Y, Limbo O, Shin DS et al. Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell 2008; 135: 97–109. ArticleCASPubMedPubMed Central Google Scholar
Paull TT, Gellert M . The 3′ to 5′ exonuclease activity of Mre 11 facilitates repair of DNA double-strand breaks. Mol Cell 1998; 1: 969–979. ArticleCASPubMed Google Scholar
de Jager M, Dronkert ML, Modesti M, Beerens CE, Kanaar R, van Gent DC . DNA-binding and strand-annealing activities of human Mre11: implications for its roles in DNA double-strand break repair pathways. Nucleic Acids Res 2001; 29: 1317–1325. ArticleCASPubMedPubMed Central Google Scholar
Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA et al. The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 2002; 418: 562–566. ArticleCASPubMed Google Scholar
Yu Z, Vogel G, Coulombe Y, Dubeau D, Spehalski E, Hebert J et al. The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation. Cell Res 2012; 22: 305–320. ArticleCASPubMed Google Scholar
Podhorecka M, Skladanowski A, Bozko P . H2AX phosphorylation: its role in DNA damage response and cancer therapy. J Nucleic Acids 2010; 2010: 920161. ArticlePubMedPubMed Central Google Scholar
Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM . A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 2000; 10: 886–895. ArticleCASPubMed Google Scholar
Zaorsky NG, Ohri N, Showalter TN, Dicker AP, Den RB . Systematic review of hypofractionated radiation therapy for prostate cancer. Cancer Treat Rev 2013; 39: 728–736. ArticlePubMed Google Scholar
Bais MV, Wigner N, Young M, Toholka R, Graves DT, Morgan EF et al. BMP2 is essential for post natal osteogenesis but not for recruitment of osteogenic stem cells. Bone 2009; 45: 254–266. ArticleCASPubMedPubMed Central Google Scholar
Nakano D, Kobori H, Burford JL, Gevorgyan H, Seidel S, Hitomi H et al. Multiphoton imaging of the glomerular permeability of angiotensinogen. J Am Soc Nephrol 2012; 23: 1847–1856. ArticlePubMedPubMed Central Google Scholar
Wang L, Sapuri-Butti AR, Aung HH, Parikh AN, Rutledge JC . Triglyceride-rich lipoprotein lipolysis increases aggregation of endothelial cell membrane microdomains and produces reactive oxygen species. Am J Physiol Heart Circ Physiol 2008; 295: H237–H244. ArticleCASPubMedPubMed Central Google Scholar
Matassov D, Kagan T, Leblanc J, Sikorska M, Zakeri Z . Measurement of apoptosis by DNA fragmentation. Methods Mol Biol 2004; 282: 1–17. CASPubMed Google Scholar
Hurtado PA, Vora S, Sume SS, Yang D St, Hilaire C, Guo Y et al. Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation. Biochem Biophys Res Commun 2008; 366: 156–161. ArticleCASPubMed Google Scholar
Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C . Clonogenic assay of cells in vitro. Nat Protoc 2006; 1: 2315–2319. ArticleCASPubMed Google Scholar
Munshi A, Hobbs M, Meyn RE . Clonogenic cell survival assay. Methods Mol Med 2005; 110: 21–28. PubMed Google Scholar