Meng-Chao Yao - Academia.edu (original) (raw)
Papers by Meng-Chao Yao
Scientific Reports, 2019
Ciliates are unicellular eukaryotes known for their cellular complexity and wide range of natural... more Ciliates are unicellular eukaryotes known for their cellular complexity and wide range of natural habitats. How they adapt to their niches and what roles they play in ecology remain largely unknown. The genus Tetrahymena is among the best-studied groups of ciliates and one particular species, Tetrahymena thermophila, is a well-known laboratory model organism in cell and molecular biology, making it an excellent candidate for study in protist ecology. Here, based on cytochrome c oxidase subunit I (COX1) gene barcoding, we identify a total of 19 different putative Tetrahymena species and two closely related Glaucoma lineages isolated from distinct natural habitats, of which 13 are new species. These latter include 11 Tetrahymena species found in the bladder traps of Utricularia plants, the most species-rich and widely distributed aquatic carnivorous plant, thus revealing a previously unknown but significant symbiosis of Tetrahymena species living among the microbial community of Utric...
Proceedings of the National Academy of Sciences, 1989
A circular plasmid containing a complete Tetrahymena thermophila rRNA gene (rDNA), with a tandem ... more A circular plasmid containing a complete Tetrahymena thermophila rRNA gene (rDNA), with a tandem repeat of a 1.9-kilobase-pair segment encompassing the replication origin and the rRNA promoter, and a polylinker in the 3' nontranscribed spacer, was used to transform T. thermophila by microinjection. Most (20/21) stable transformants contained only recombinant linear palindromic rDNA molecules carrying rDNA sequences from both the donor plasmid and the recipient cell, as shown previously. However, in one transformant, the circular plasmid initially outreplicated the endogenous rDNA and was the major rDNA form for up to 65 generations. Stable circular replicons have not been reported previously in Tetrahymena. A single point mutation (+G) was identified in the repeated promoter of the plasmid maintained in this transformant. After recovery from the Tetrahymena transformant and recloning in Escherichia coli, the mutated circular plasmid again transformed Tetrahymena with stable main...
This article cites 54 articles, 33 of which can be accessed free
Genetics, 1996
Extensive, programmed chromosome breakage occurs during formation of the somatic macronucleus of ... more Extensive, programmed chromosome breakage occurs during formation of the somatic macronucleus of ciliated protozoa. The cis-acting signal directing breakage has been most rigorously defined in Tetrahymena thermophila, where it consists of a 15-bp DNA sequence known as Cbs, for chromosome breakage sequence. We have identified sequences identical or nearly identical to the T. thermophila Cbs at sites of breakage flanking the germline micronuclear rDNA locus of six additional species of Tetrahymena as well as members of two related genera. Other general features of the breakage site are also conserved, but surprisingly, the orientation and number of copies of Cbs are not always conserved, suggesting the occurrence of germline rearrangement events over evolutionary time. At one end of the T. thermophila micronuclear rDNA locus, a pair of short inverted repeats adjacent to Cbs directs the formation of a giant palindromic molecule. We have examined the corresponding sequences from two oth...
Genetics, 1994
A method for mapping DNA sequences to specific germinal chromosomes in the ciliated protozoan Tet... more A method for mapping DNA sequences to specific germinal chromosomes in the ciliated protozoan Tetrahymena thermophila has been developed. This mapping technique (PCR mapping) utilizes the polymerase chain reaction and template DNA derived from nullisomic strains to directly assign micronuclear DNA sequences to specific micronuclear chromosomes. Using this technique, a number of unique sequences and short repetitive sequences flanked by unique sequences have been mapped to four of the five germinal chromosomes.
Genetics, 1998
Peptidyl transfer of a growing peptide on a ribosome-bound transfer RNA (tRNA) to an incoming ami... more Peptidyl transfer of a growing peptide on a ribosome-bound transfer RNA (tRNA) to an incoming amino acyl tRNA is the central step in translation, and it may be catalyzed primarily by the large subunit (LSU) ribosomal RNA (rRNA). Genetic and biochemical evidence suggests that the central loop of domain V of the LSU rRNA plays a direct role in peptidyl transfer. It was previously found that a single base change at a universally conserved site in this region of the Tetrahymena thermophila LSU rRNA confers anisomycin resistance (an-r) as well as extremely slow growth, cold sensitivity, and aberrant cell morphology. Because anisomycin specifically inhibits peptidyl transfer, possibly by interfering with tRNA binding, it is likely that this mutant rRNA is defective in efficiently completing one of these steps. In the present study, we have isolated an intragenic suppressor mutation located only three bases away from the original mutation that partially reverses the slow growth and cold-se...
PLOS Biology, 2020
Recognition of self and nonself is important for outcrossing organisms, and different mating type... more Recognition of self and nonself is important for outcrossing organisms, and different mating types establish the barrier against self-mating. In the unicellular ciliate T. thermophila, mating type determination requires complex DNA rearrangements at a single mat locus during conjugation to produce a type-specific gene pair (MTA and MTB) for 1 of 7 possible mating types. Surprisingly, we found that decreased expression of the DNA breakage-repair protein Ku80 at late stages of conjugation generated persistent selfing phenotype in the progeny. DNA analysis revealed multiple mating-type gene pairs as well as a variety of mis-paired, unusually arranged mating-type genes in these selfers that resemble some proposed rearrangement intermediates. They are found also in normal cells during conjugation and are lost after 10 fissions but are retained in Ku mutants. Silencing of TKU80 or TKU70-2 immediately after conjugation also generated selfing phenotype, revealing a hidden DNA rearrangement process beyond conjugation. Mating reactions between the mutant and normal cells suggest a 2-component system for self-nonself-recognition through MTA and MTB genes.
Proceedings of the National Academy of Sciences, 1974
The percentage of DNA complementary to 25S and 17S rRNA has been determined for both the macro- a... more The percentage of DNA complementary to 25S and 17S rRNA has been determined for both the macro- and micronucleus of the ciliated protozoan, Tetrahymena pyriformis . Saturation levels obtained by DNA·RNA hybridization indicate that approximately 200 copies of the gene for rRNA per haploid genome were present in macronuclei. The saturation level obtained with DNA extracted from isolated micronuclei was only 5-10% of the level obtained with DNA from macronuclei. After correction for contamination of micronuclear DNA by DNA from macronuclei, only a few copies (possibly only 1) of the gene for rRNA are estimated to be present in micronuclei. Micronuclei are germinal nuclei. Macronuclei serve as somatic nuclei during vegetative growth but are destroyed every sexual generation and are reformed from products of meiosis, fertilization, and division of the micronuclei. Thus, the hybridization data suggest that the gene for rRNA must be amplified during macronuclear formation with each sexual ...
Molecular and Cellular Biology, 1997
We have analyzed the cis-acting sequences that regulate rRNA gene (rDNA) replication in Tetrahyme... more We have analyzed the cis-acting sequences that regulate rRNA gene (rDNA) replication in Tetrahymena thermophila. The macronucleus of this ciliated protozoan contains 9,000 copies of a 21-kbp minichromosome in the form of a palindrome comprising two copies of the rDNA. These are derived from a single chromosomally integrated copy during conjugation through selective amplification and are maintained by replicating once per cell cycle during vegetative growth. We have developed a transformation vector and carried out a deletion analysis to determine the minimal sequences required for replication, amplification, and/or stable maintenance of the rDNA molecule. Using constructs containing progressively longer deletions, we show that only a small portion (approximately 900 bp) of the rDNA is needed for extrachromosomal replication and stable maintenance of this molecule. This core region is very near but does not include the rRNA transcription initiation site or its putative promoter, indi...
Molecular and Cellular Biology, 1996
Site-specific DNA deletion occurs at thousands of sites within the genome during macronuclear dev... more Site-specific DNA deletion occurs at thousands of sites within the genome during macronuclear development of Tetrahymena thermophila. These deletion elements are usually not detected in macronuclear chromosomes. We have interfered with the normal deletion of two of these elements, the adjacent M and R elements, by loading vegetative macronuclei with these elements prior to sexual conjugation. Transformed cell lines containing the exogenous M or R element, carried on high-copy-number vectors containing genes encoding rRNA within parental (old) macronuclei, consistently failed to excise chromosomal copies of the M or R element during formation of new macronuclei. Little or no interference with the deletions of adjacent elements or of unlinked elements was observed. The micronucleus (germ line)-limited region of each element was sufficient to inhibit specific DNA deletion. This interference with DNA deletion usually is manifested as a cytoplasmic dominant trait: deletion elements prese...
Molecular and Cellular Biology, 1995
Large palindromic DNAs are found in a wide variety of eukaryotic cells. In Tetrahymena thermophil... more Large palindromic DNAs are found in a wide variety of eukaryotic cells. In Tetrahymena thermophila, a large palindrome is formed from a single rRNA gene (rDNA) during nuclear differentiation. We present evidence that a key step in the formation of the rDNA palindrome of T. thermophila involves homologous intramolecular recombination. Heteroduplex micronuclear rDNA molecules were constructed in vitro and microinjected into developing macronuclei, where they formed palindromes. Analysis of the resulting palindromes indicated that both strands of the microinjected rDNA are used to form the same palindrome. This study, together with a previous study (L. F. Yasuda and M.-C. Yao, Cell 67:505-516, 1991), is the first to define a molecular pathway of palindrome formation. The process is initiated by chromosome breakage at sites flanking the micronuclear rDNA. An intramolecular recombination reaction, guided by a pair of short inverted repeats located at the 5' end of the excised rDNA, c...
Journal of Cell Science, 2016
Bi-directional non-coding transcripts and their ∼29 nt small RNA products are known to guide DNA ... more Bi-directional non-coding transcripts and their ∼29 nt small RNA products are known to guide DNA deletion in Tetrahymena, leading to the removal of one-third of the genome from developing somatic nuclei. Using an antibody specific for long double-stranded RNAs (dsRNAs), we determined the dynamic subcellular distributions of these RNAs. Conjugation-specific dsRNAs are found and show sequential appearances in parental germline, parental somatic nuclei and finally in new somatic nuclei of progeny. The dsRNAs in germline nuclei and new somatic nuclei are likely transcribed from the sequences destined for deletion; however, the dsRNAs in parental somatic nuclei are unexpected, and PCR analyses suggest their transcription in this nucleus. Deficiency in RNAi pathway leads to abnormal aggregations of dsRNA in both the parental and new somatic nuclei, whereas accumulation of dsRNAs in the germline nuclei is only seen in the Dicer-like gene mutant. In addition, RNAi mutants display an early l...
Genes & Development, 2016
Ciliated protozoans perform extreme forms of programmed somatic DNA rearrangement during developm... more Ciliated protozoans perform extreme forms of programmed somatic DNA rearrangement during development. The model ciliate Tetrahymena thermophila removes 34% of its germline micronuclear genome from somatic macronuclei by excising thousands of internal eliminated sequences (IESs), a process that shares features with transposon excision. Indeed, piggyBac transposon-derived genes are necessary for genome-wide IES excision in both Tetrahymena (TPB2 [Tetrahymena piggyBac-like 2] and LIA5) and Paramecium tetraurelia (PiggyMac). T. thermophila has at least three other piggyBac-derived genes: TPB1, TPB6, and TPB7. Here, we show that TPB1 and TPB6 excise a small, distinct set of 12 unusual IESs that disrupt exons. TPB1-deficient cells complete mating, but their progeny exhibit slow growth, giant vacuoles, and osmotic shock sensitivity due to retention of an IES in the vacuolar gene DOP1 (Dopey domain-containing protein). Unlike most IESs, TPB1-dependent IESs have piggyBac-like terminal invert...
Molecular and Cellular Biology, 1985
Tetrahymena thermophila contains in the macronucleus multiple copies of extrachromosomal palindro... more Tetrahymena thermophila contains in the macronucleus multiple copies of extrachromosomal palindromic genes coding for rRNA (rDNA) which are generated from a single chromosomal copy during development. In this study we isolated the chromosomal copy of rDNA and determined the structure and developmental fate of the sequence surrounding its 5' junction. The result indicates that specific chromosomal breakage occurs at or near the 5' junction of rDNA during development. The breakage event is associated with DNA elimination and telomeric sequence addition. Similar results were also found previously for the 3' junction of this gene. These results could explain how the extrachromosomal rDNA is first generated. Near both junctions of the chromosomal rDNA, a pair of 20-nucleotide repeats was found. These sequences might serve as signals for site-specific breakage. In addition, we found a pair of perfect inverted repeats at the 5' junction of this gene. The repeats are 42 nucl...
Biology open, Jan 28, 2016
The p68 DEAD box helicases comprise a widely conserved protein family involved in a large range o... more The p68 DEAD box helicases comprise a widely conserved protein family involved in a large range of biological processes including transcription, splicing, and translation. The genome of the ciliate Tetrahymena thermophila encodes two p68-like helicases, DRH1 and LIA2 We show that DRH1 is essential for growth and completion of development. In growing cells, Drh1p is excluded from the nucleus and accumulates near cortical basal bodies. In contrast, during sexual reproduction, this protein localizes to meiotic micronuclei, initially in punctate foci in regions where centromeres and telomeres are known to reside and later in post-zygotic differentiating somatic macronuclei. Differentiation of the macronuclear genome involves extensive DNA rearrangements including fragmentation of the five pairs of germline-derived chromosomes into 180 chromosomal sub-fragments that are stabilized by de novo telomere deletion. In addition, thousands of internal eliminated sequences (IESs) are excised fro...
Molecular Cell, 1999
time genome rearrangement occurs (Madireddi et al., 1994). The most abundant of these has been na... more time genome rearrangement occurs (Madireddi et al., 1994). The most abundant of these has been named Pdd1p, for its apparent role in programmed DNA degradation, and the gene encoding it PDD1 (Madireddi et al., 1996). Pdd1p associates with DNA being eliminated
Molecular and Cellular Biology, 1999
In the ciliate Tetrahymena thermophila , thousands of DNA segments of variable size are eliminate... more In the ciliate Tetrahymena thermophila , thousands of DNA segments of variable size are eliminated from the developing somatic macronucleus by specific DNA rearrangements. It is unclear whether rearrangement of the many different DNA elements occurs via a single mechanism or via multiple rearrangement systems. In this study, we characterized in vivo cis -acting sequences required for the rearrangement of the 1.1-kbp R deletion element. We found that rearrangement requires specific sequences flanking each side of the deletion element. The required sequences on the left side appear to span roughly a 70-bp region that is located at least 30 bp from the rearrangement boundary. When we moved the location of the left cis -acting sequences closer to the eliminated region, we observed a rightward shift of the rearrangement boundary such that the newly formed deletion junction retained its original distance from this flanking region. Likewise, when we moved the flanking region as much as 500...
Molecular biology of the cell, Jan 15, 2010
Transposons comprise large fractions of eukaryotic genomes and provide genetic reservoirs for the... more Transposons comprise large fractions of eukaryotic genomes and provide genetic reservoirs for the evolution of new cellular functions. We identified TPB2, a homolog of the piggyBac transposase gene that is required for programmed DNA deletion in Tetrahymena. TPB2 was expressed exclusively during the time of DNA excision, and its encoded protein Tpb2p was localized in DNA elimination heterochromatin structures. Notably, silencing of TPB2 by RNAi disrupts the final assembly of these heterochromatin structures and prevents DNA deletion to occur. In vitro studies revealed that Tpb2p is an endonuclease that produces double-strand breaks with four-base 5' protruding ends, similar to the ends generated during DNA deletion. These findings suggest that Tpb2p plays a key role in the assembly of specialized DNA elimination chromatin architectures and is likely responsible for the DNA cleavage step of programmed DNA deletion.
Science, 2003
Genomewide DNA rearrangements occur in many eukaryotes during development, but their functions an... more Genomewide DNA rearrangements occur in many eukaryotes during development, but their functions and mechanisms are poorly understood. Previous studies have implicated a sequence-recognition mechanism based on RNA-mediated interactions between nuclei in ciliated protozoa. In this study, we found that the process recognized and deleted a foreign gene integrated in a Tetrahymena chromosome, suggesting an unusual mechanism of genome surveillance. We further found that injection of double-stranded RNA into the cell at specific developmental stages triggers efficient deletion of the targeted genomic regions. Together the results indicate an RNA-based mechanism that directs genomewide DNA rearrangements and serves to disable invading genetic agents.
Proceedings of the National Academy of Sciences, 1991
A method for transforming Tetrahymena has been established earlier, but its application has been ... more A method for transforming Tetrahymena has been established earlier, but its application has been limited because of the lack of selectable markers other than the rRNA-encoding DNA (rDNA). Mutations in the yeast ribosomal protein L29 gene (CYH2) are known that confer cycloheximide resistance. We have cloned and sequenced the homologue of this gene from both a wild-type and a cycloheximide-resistant (ChxA) strain of Tetrahymena. Surprisingly, a comparison shows that the ChxA mutation is not present in the CYH2 homologue. We therefore created the yeast mutations in the Tetrahymena gene by site-directed mutagenesis and used them to transform Tetrahymena either with or without linking to an rDNA vector. All clones transformed by the rDNA vector also became resistant to cycloheximide when the rDNA contained the engineered mutant genes. Without the rDNA vector, the mutant genes transform approximately 1% of injected cells to become resistant to cycloheximide. DNA analysis indicates that tr...
Scientific Reports, 2019
Ciliates are unicellular eukaryotes known for their cellular complexity and wide range of natural... more Ciliates are unicellular eukaryotes known for their cellular complexity and wide range of natural habitats. How they adapt to their niches and what roles they play in ecology remain largely unknown. The genus Tetrahymena is among the best-studied groups of ciliates and one particular species, Tetrahymena thermophila, is a well-known laboratory model organism in cell and molecular biology, making it an excellent candidate for study in protist ecology. Here, based on cytochrome c oxidase subunit I (COX1) gene barcoding, we identify a total of 19 different putative Tetrahymena species and two closely related Glaucoma lineages isolated from distinct natural habitats, of which 13 are new species. These latter include 11 Tetrahymena species found in the bladder traps of Utricularia plants, the most species-rich and widely distributed aquatic carnivorous plant, thus revealing a previously unknown but significant symbiosis of Tetrahymena species living among the microbial community of Utric...
Proceedings of the National Academy of Sciences, 1989
A circular plasmid containing a complete Tetrahymena thermophila rRNA gene (rDNA), with a tandem ... more A circular plasmid containing a complete Tetrahymena thermophila rRNA gene (rDNA), with a tandem repeat of a 1.9-kilobase-pair segment encompassing the replication origin and the rRNA promoter, and a polylinker in the 3' nontranscribed spacer, was used to transform T. thermophila by microinjection. Most (20/21) stable transformants contained only recombinant linear palindromic rDNA molecules carrying rDNA sequences from both the donor plasmid and the recipient cell, as shown previously. However, in one transformant, the circular plasmid initially outreplicated the endogenous rDNA and was the major rDNA form for up to 65 generations. Stable circular replicons have not been reported previously in Tetrahymena. A single point mutation (+G) was identified in the repeated promoter of the plasmid maintained in this transformant. After recovery from the Tetrahymena transformant and recloning in Escherichia coli, the mutated circular plasmid again transformed Tetrahymena with stable main...
This article cites 54 articles, 33 of which can be accessed free
Genetics, 1996
Extensive, programmed chromosome breakage occurs during formation of the somatic macronucleus of ... more Extensive, programmed chromosome breakage occurs during formation of the somatic macronucleus of ciliated protozoa. The cis-acting signal directing breakage has been most rigorously defined in Tetrahymena thermophila, where it consists of a 15-bp DNA sequence known as Cbs, for chromosome breakage sequence. We have identified sequences identical or nearly identical to the T. thermophila Cbs at sites of breakage flanking the germline micronuclear rDNA locus of six additional species of Tetrahymena as well as members of two related genera. Other general features of the breakage site are also conserved, but surprisingly, the orientation and number of copies of Cbs are not always conserved, suggesting the occurrence of germline rearrangement events over evolutionary time. At one end of the T. thermophila micronuclear rDNA locus, a pair of short inverted repeats adjacent to Cbs directs the formation of a giant palindromic molecule. We have examined the corresponding sequences from two oth...
Genetics, 1994
A method for mapping DNA sequences to specific germinal chromosomes in the ciliated protozoan Tet... more A method for mapping DNA sequences to specific germinal chromosomes in the ciliated protozoan Tetrahymena thermophila has been developed. This mapping technique (PCR mapping) utilizes the polymerase chain reaction and template DNA derived from nullisomic strains to directly assign micronuclear DNA sequences to specific micronuclear chromosomes. Using this technique, a number of unique sequences and short repetitive sequences flanked by unique sequences have been mapped to four of the five germinal chromosomes.
Genetics, 1998
Peptidyl transfer of a growing peptide on a ribosome-bound transfer RNA (tRNA) to an incoming ami... more Peptidyl transfer of a growing peptide on a ribosome-bound transfer RNA (tRNA) to an incoming amino acyl tRNA is the central step in translation, and it may be catalyzed primarily by the large subunit (LSU) ribosomal RNA (rRNA). Genetic and biochemical evidence suggests that the central loop of domain V of the LSU rRNA plays a direct role in peptidyl transfer. It was previously found that a single base change at a universally conserved site in this region of the Tetrahymena thermophila LSU rRNA confers anisomycin resistance (an-r) as well as extremely slow growth, cold sensitivity, and aberrant cell morphology. Because anisomycin specifically inhibits peptidyl transfer, possibly by interfering with tRNA binding, it is likely that this mutant rRNA is defective in efficiently completing one of these steps. In the present study, we have isolated an intragenic suppressor mutation located only three bases away from the original mutation that partially reverses the slow growth and cold-se...
PLOS Biology, 2020
Recognition of self and nonself is important for outcrossing organisms, and different mating type... more Recognition of self and nonself is important for outcrossing organisms, and different mating types establish the barrier against self-mating. In the unicellular ciliate T. thermophila, mating type determination requires complex DNA rearrangements at a single mat locus during conjugation to produce a type-specific gene pair (MTA and MTB) for 1 of 7 possible mating types. Surprisingly, we found that decreased expression of the DNA breakage-repair protein Ku80 at late stages of conjugation generated persistent selfing phenotype in the progeny. DNA analysis revealed multiple mating-type gene pairs as well as a variety of mis-paired, unusually arranged mating-type genes in these selfers that resemble some proposed rearrangement intermediates. They are found also in normal cells during conjugation and are lost after 10 fissions but are retained in Ku mutants. Silencing of TKU80 or TKU70-2 immediately after conjugation also generated selfing phenotype, revealing a hidden DNA rearrangement process beyond conjugation. Mating reactions between the mutant and normal cells suggest a 2-component system for self-nonself-recognition through MTA and MTB genes.
Proceedings of the National Academy of Sciences, 1974
The percentage of DNA complementary to 25S and 17S rRNA has been determined for both the macro- a... more The percentage of DNA complementary to 25S and 17S rRNA has been determined for both the macro- and micronucleus of the ciliated protozoan, Tetrahymena pyriformis . Saturation levels obtained by DNA·RNA hybridization indicate that approximately 200 copies of the gene for rRNA per haploid genome were present in macronuclei. The saturation level obtained with DNA extracted from isolated micronuclei was only 5-10% of the level obtained with DNA from macronuclei. After correction for contamination of micronuclear DNA by DNA from macronuclei, only a few copies (possibly only 1) of the gene for rRNA are estimated to be present in micronuclei. Micronuclei are germinal nuclei. Macronuclei serve as somatic nuclei during vegetative growth but are destroyed every sexual generation and are reformed from products of meiosis, fertilization, and division of the micronuclei. Thus, the hybridization data suggest that the gene for rRNA must be amplified during macronuclear formation with each sexual ...
Molecular and Cellular Biology, 1997
We have analyzed the cis-acting sequences that regulate rRNA gene (rDNA) replication in Tetrahyme... more We have analyzed the cis-acting sequences that regulate rRNA gene (rDNA) replication in Tetrahymena thermophila. The macronucleus of this ciliated protozoan contains 9,000 copies of a 21-kbp minichromosome in the form of a palindrome comprising two copies of the rDNA. These are derived from a single chromosomally integrated copy during conjugation through selective amplification and are maintained by replicating once per cell cycle during vegetative growth. We have developed a transformation vector and carried out a deletion analysis to determine the minimal sequences required for replication, amplification, and/or stable maintenance of the rDNA molecule. Using constructs containing progressively longer deletions, we show that only a small portion (approximately 900 bp) of the rDNA is needed for extrachromosomal replication and stable maintenance of this molecule. This core region is very near but does not include the rRNA transcription initiation site or its putative promoter, indi...
Molecular and Cellular Biology, 1996
Site-specific DNA deletion occurs at thousands of sites within the genome during macronuclear dev... more Site-specific DNA deletion occurs at thousands of sites within the genome during macronuclear development of Tetrahymena thermophila. These deletion elements are usually not detected in macronuclear chromosomes. We have interfered with the normal deletion of two of these elements, the adjacent M and R elements, by loading vegetative macronuclei with these elements prior to sexual conjugation. Transformed cell lines containing the exogenous M or R element, carried on high-copy-number vectors containing genes encoding rRNA within parental (old) macronuclei, consistently failed to excise chromosomal copies of the M or R element during formation of new macronuclei. Little or no interference with the deletions of adjacent elements or of unlinked elements was observed. The micronucleus (germ line)-limited region of each element was sufficient to inhibit specific DNA deletion. This interference with DNA deletion usually is manifested as a cytoplasmic dominant trait: deletion elements prese...
Molecular and Cellular Biology, 1995
Large palindromic DNAs are found in a wide variety of eukaryotic cells. In Tetrahymena thermophil... more Large palindromic DNAs are found in a wide variety of eukaryotic cells. In Tetrahymena thermophila, a large palindrome is formed from a single rRNA gene (rDNA) during nuclear differentiation. We present evidence that a key step in the formation of the rDNA palindrome of T. thermophila involves homologous intramolecular recombination. Heteroduplex micronuclear rDNA molecules were constructed in vitro and microinjected into developing macronuclei, where they formed palindromes. Analysis of the resulting palindromes indicated that both strands of the microinjected rDNA are used to form the same palindrome. This study, together with a previous study (L. F. Yasuda and M.-C. Yao, Cell 67:505-516, 1991), is the first to define a molecular pathway of palindrome formation. The process is initiated by chromosome breakage at sites flanking the micronuclear rDNA. An intramolecular recombination reaction, guided by a pair of short inverted repeats located at the 5' end of the excised rDNA, c...
Journal of Cell Science, 2016
Bi-directional non-coding transcripts and their ∼29 nt small RNA products are known to guide DNA ... more Bi-directional non-coding transcripts and their ∼29 nt small RNA products are known to guide DNA deletion in Tetrahymena, leading to the removal of one-third of the genome from developing somatic nuclei. Using an antibody specific for long double-stranded RNAs (dsRNAs), we determined the dynamic subcellular distributions of these RNAs. Conjugation-specific dsRNAs are found and show sequential appearances in parental germline, parental somatic nuclei and finally in new somatic nuclei of progeny. The dsRNAs in germline nuclei and new somatic nuclei are likely transcribed from the sequences destined for deletion; however, the dsRNAs in parental somatic nuclei are unexpected, and PCR analyses suggest their transcription in this nucleus. Deficiency in RNAi pathway leads to abnormal aggregations of dsRNA in both the parental and new somatic nuclei, whereas accumulation of dsRNAs in the germline nuclei is only seen in the Dicer-like gene mutant. In addition, RNAi mutants display an early l...
Genes & Development, 2016
Ciliated protozoans perform extreme forms of programmed somatic DNA rearrangement during developm... more Ciliated protozoans perform extreme forms of programmed somatic DNA rearrangement during development. The model ciliate Tetrahymena thermophila removes 34% of its germline micronuclear genome from somatic macronuclei by excising thousands of internal eliminated sequences (IESs), a process that shares features with transposon excision. Indeed, piggyBac transposon-derived genes are necessary for genome-wide IES excision in both Tetrahymena (TPB2 [Tetrahymena piggyBac-like 2] and LIA5) and Paramecium tetraurelia (PiggyMac). T. thermophila has at least three other piggyBac-derived genes: TPB1, TPB6, and TPB7. Here, we show that TPB1 and TPB6 excise a small, distinct set of 12 unusual IESs that disrupt exons. TPB1-deficient cells complete mating, but their progeny exhibit slow growth, giant vacuoles, and osmotic shock sensitivity due to retention of an IES in the vacuolar gene DOP1 (Dopey domain-containing protein). Unlike most IESs, TPB1-dependent IESs have piggyBac-like terminal invert...
Molecular and Cellular Biology, 1985
Tetrahymena thermophila contains in the macronucleus multiple copies of extrachromosomal palindro... more Tetrahymena thermophila contains in the macronucleus multiple copies of extrachromosomal palindromic genes coding for rRNA (rDNA) which are generated from a single chromosomal copy during development. In this study we isolated the chromosomal copy of rDNA and determined the structure and developmental fate of the sequence surrounding its 5' junction. The result indicates that specific chromosomal breakage occurs at or near the 5' junction of rDNA during development. The breakage event is associated with DNA elimination and telomeric sequence addition. Similar results were also found previously for the 3' junction of this gene. These results could explain how the extrachromosomal rDNA is first generated. Near both junctions of the chromosomal rDNA, a pair of 20-nucleotide repeats was found. These sequences might serve as signals for site-specific breakage. In addition, we found a pair of perfect inverted repeats at the 5' junction of this gene. The repeats are 42 nucl...
Biology open, Jan 28, 2016
The p68 DEAD box helicases comprise a widely conserved protein family involved in a large range o... more The p68 DEAD box helicases comprise a widely conserved protein family involved in a large range of biological processes including transcription, splicing, and translation. The genome of the ciliate Tetrahymena thermophila encodes two p68-like helicases, DRH1 and LIA2 We show that DRH1 is essential for growth and completion of development. In growing cells, Drh1p is excluded from the nucleus and accumulates near cortical basal bodies. In contrast, during sexual reproduction, this protein localizes to meiotic micronuclei, initially in punctate foci in regions where centromeres and telomeres are known to reside and later in post-zygotic differentiating somatic macronuclei. Differentiation of the macronuclear genome involves extensive DNA rearrangements including fragmentation of the five pairs of germline-derived chromosomes into 180 chromosomal sub-fragments that are stabilized by de novo telomere deletion. In addition, thousands of internal eliminated sequences (IESs) are excised fro...
Molecular Cell, 1999
time genome rearrangement occurs (Madireddi et al., 1994). The most abundant of these has been na... more time genome rearrangement occurs (Madireddi et al., 1994). The most abundant of these has been named Pdd1p, for its apparent role in programmed DNA degradation, and the gene encoding it PDD1 (Madireddi et al., 1996). Pdd1p associates with DNA being eliminated
Molecular and Cellular Biology, 1999
In the ciliate Tetrahymena thermophila , thousands of DNA segments of variable size are eliminate... more In the ciliate Tetrahymena thermophila , thousands of DNA segments of variable size are eliminated from the developing somatic macronucleus by specific DNA rearrangements. It is unclear whether rearrangement of the many different DNA elements occurs via a single mechanism or via multiple rearrangement systems. In this study, we characterized in vivo cis -acting sequences required for the rearrangement of the 1.1-kbp R deletion element. We found that rearrangement requires specific sequences flanking each side of the deletion element. The required sequences on the left side appear to span roughly a 70-bp region that is located at least 30 bp from the rearrangement boundary. When we moved the location of the left cis -acting sequences closer to the eliminated region, we observed a rightward shift of the rearrangement boundary such that the newly formed deletion junction retained its original distance from this flanking region. Likewise, when we moved the flanking region as much as 500...
Molecular biology of the cell, Jan 15, 2010
Transposons comprise large fractions of eukaryotic genomes and provide genetic reservoirs for the... more Transposons comprise large fractions of eukaryotic genomes and provide genetic reservoirs for the evolution of new cellular functions. We identified TPB2, a homolog of the piggyBac transposase gene that is required for programmed DNA deletion in Tetrahymena. TPB2 was expressed exclusively during the time of DNA excision, and its encoded protein Tpb2p was localized in DNA elimination heterochromatin structures. Notably, silencing of TPB2 by RNAi disrupts the final assembly of these heterochromatin structures and prevents DNA deletion to occur. In vitro studies revealed that Tpb2p is an endonuclease that produces double-strand breaks with four-base 5' protruding ends, similar to the ends generated during DNA deletion. These findings suggest that Tpb2p plays a key role in the assembly of specialized DNA elimination chromatin architectures and is likely responsible for the DNA cleavage step of programmed DNA deletion.
Science, 2003
Genomewide DNA rearrangements occur in many eukaryotes during development, but their functions an... more Genomewide DNA rearrangements occur in many eukaryotes during development, but their functions and mechanisms are poorly understood. Previous studies have implicated a sequence-recognition mechanism based on RNA-mediated interactions between nuclei in ciliated protozoa. In this study, we found that the process recognized and deleted a foreign gene integrated in a Tetrahymena chromosome, suggesting an unusual mechanism of genome surveillance. We further found that injection of double-stranded RNA into the cell at specific developmental stages triggers efficient deletion of the targeted genomic regions. Together the results indicate an RNA-based mechanism that directs genomewide DNA rearrangements and serves to disable invading genetic agents.
Proceedings of the National Academy of Sciences, 1991
A method for transforming Tetrahymena has been established earlier, but its application has been ... more A method for transforming Tetrahymena has been established earlier, but its application has been limited because of the lack of selectable markers other than the rRNA-encoding DNA (rDNA). Mutations in the yeast ribosomal protein L29 gene (CYH2) are known that confer cycloheximide resistance. We have cloned and sequenced the homologue of this gene from both a wild-type and a cycloheximide-resistant (ChxA) strain of Tetrahymena. Surprisingly, a comparison shows that the ChxA mutation is not present in the CYH2 homologue. We therefore created the yeast mutations in the Tetrahymena gene by site-directed mutagenesis and used them to transform Tetrahymena either with or without linking to an rDNA vector. All clones transformed by the rDNA vector also became resistant to cycloheximide when the rDNA contained the engineered mutant genes. Without the rDNA vector, the mutant genes transform approximately 1% of injected cells to become resistant to cycloheximide. DNA analysis indicates that tr...