Activation of heparanase by ultraviolet B irradiation leads to functional loss of basement membrane at the dermal–epidermal junction in human skin (original) (raw)
Abboud-Jarrous G, Atzmon R, Peretz T, Palermo C, Gadea BB, Joyce JA, Vlodavsky I (2008) Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J Biol Chem 283(26):18167–18176 ArticlePubMedCAS Google Scholar
Ashikari-Hada S, Habuchi H, Kariya Y, Itoh N, Reddi AH, Kimata K (2004) Characterization of growth factor-binding structures in heparin/heparan sulfate using an octasaccharide library. J Biol Chem 279(13):12346–12354 ArticlePubMedCAS Google Scholar
Behzad F, Brenchley PE (2003) A multiwell format assay for heparanase. Anal Biochem 320(2):207–213 ArticlePubMedCAS Google Scholar
Bernard D, Mehul B, Delattre C, Simonetti L, Thomas-Collignon A, Schmidt R (2001) Purification and characterization of the endoglycosidase heparanase 1 from human plantar stratum corneum: a key enzyme in epidermal physiology? J Investig Dermatol 117(5):1266–1273 ArticlePubMedCAS Google Scholar
Campbell EJ, Owen CA (2007) The sulfate groups of chondroitin sulfate- and heparan sulfate-containing proteoglycans in neutrophil plasma membranes are novel binding sites for human leukocyte elastase and cathepsin G. J Biol Chem 282(19):14645–14654 ArticlePubMedCAS Google Scholar
Chung JH, Yano K, Lee MK, Youn CS, Seo JY, Kim KH, Cho KH, Eun HC, Detmar M (2002) Differential effects of photoaging vs intrinsic aging on the vascularization of human skin. Arch Dermatol 138(11):1437–1442 ArticlePubMed Google Scholar
Detmar M, Yeo KT, Nagy JA, Van de Water L, Brown LF, Berse B, Elicker BM, Ledbetter S, Dvorak HF (1995) Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. J Investig Dermatol 105(1):44–50 ArticlePubMedCAS Google Scholar
Elkin M, Ilan N, Ishai-Michaeli R, Friedmann Y, Papo O, Pecker I, Vlodavsky I (2001) Heparanase as mediator of angiogenesis: mode of action. Faseb J 15(9):1661–1663 PubMedCAS Google Scholar
Freeman C, Liu L, Banwell MG, Brown KJ, Bezos A, Ferro V, Parish CR (2005) Use of sulfated linked cyclitols as heparan sulfate mimetics to probe the heparin/heparan sulfate binding specificity of proteins. J Biol Chem 280(10):8842–8849 ArticlePubMedCAS Google Scholar
Freeman C, Parish CR (1998) Human platelet heparanase: purification, characterization and catalytic activity. Biochem J 330(Pt 3):1341–1350 PubMedCAS Google Scholar
Friedl A, Chang Z, Tierney A, Rapraeger AC (1997) Differential binding of fibroblast growth factor-2 and -7 to basement membrane heparan sulfate: comparison of normal and abnormal human tissues. Am J Pathol 150(4):1443–1455 PubMedCAS Google Scholar
Fuki II, Iozzo RV, Williams KJ (2000) Perlecan heparan sulfate proteoglycan. A novel receptor that mediates a distinct pathway for ligand catabolism. J Biol Chem 275(40):31554 PubMedCAS Google Scholar
Gilchrest BA (1989) Skin aging and photoaging: an overview. J Am Acad Dermatol 21(3 Pt 2):610–613 ArticlePubMedCAS Google Scholar
Gingis-Velitski S, Ishai-Michaeli R, Vlodavsky I, Ilan N (2007) Anti-heparanase monoclonal antibody enhances heparanase enzymatic activity and facilitates wound healing. Faseb J 21(14):3986–3993 ArticlePubMedCAS Google Scholar
Griffiths CE (1992) The clinical identification and quantification of photodamage. Br J Dermatol 127(Suppl 41):37–42 ArticlePubMed Google Scholar
Inoue K, Hosoi J, Denda M (2007) Extracellular ATP has stimulatory effects on the expression and release of IL-6 via purinergic receptors in normal human epidermal keratinocytes. J Investig Dermatol 127(2):362–371 ArticlePubMedCAS Google Scholar
Iozzo RV (2005) Basement membrane proteoglycans: from cellar to ceiling. Nat Rev 6(8):646–656 ArticleCAS Google Scholar
Iriyama S, Matsunaga Y, Amano S (2010) Heparanase activation induces epidermal hyperplasia, angiogenesis, lymphangiogenesis and wrinkles. Exp Dermatol 19(11):965–972 Google Scholar
Kadoya K, Sasaki T, Kostka G, Timpl R, Matsuzaki K, Kumagai N, Sakai LY, Nishiyama T, Amano S (2005) Fibulin-5 deposition in human skin: decrease with ageing and ultraviolet B exposure and increase in solar elastosis. Br J Dermatol 153(3):607–612 ArticlePubMedCAS Google Scholar
Kajiya K, Hirakawa S, Detmar M (2006) Vascular endothelial growth factor-A mediates ultraviolet B-induced impairment of lymphatic vessel function. Am J Pathol 169(4):1496–1503 ArticlePubMedCAS Google Scholar
Kajiya K, Kunstfeld R, Detmar M, Chung JH (2007) Reduction of lymphatic vessels in photodamaged human skin. J Dermatol Sci 47(3):241–243 ArticlePubMed Google Scholar
Kan M, Wu X, Wang F, McKeehan WL (1999) Specificity for fibroblast growth factors determined by heparan sulfate in a binary complex with the receptor kinase. J Biol Chem 274(22):15947–15952 ArticlePubMedCAS Google Scholar
Kato M, Wang H, Kainulainen V, Fitzgerald ML, Ledbetter S, Ornitz DM, Bernfield M (1998) Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 4(6):691–697 ArticlePubMedCAS Google Scholar
Kobayashi M, Naomoto Y, Nobuhisa T, Okawa T, Takaoka M, Shirakawa Y, Yamatsuji T, Matsuoka J, Mizushima T, Matsuura H, Nakajima M, Nakagawa H, Rustgi A, Tanaka N (2006) Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage. Differ Res Biol Divers 74(5):235–243 CAS Google Scholar
Koyama Y, Naruo H, Yoshitomi Y, Munesue S, Kiyono S, Kusano Y, Hashimoto K, Yokoi T, Nakanishi H, Shimizu S, Okayama M, Oguri K (2008) Matrix metalloproteinase-9 associated with heparan sulphate chains of GPI-anchored cell surface proteoglycans mediates motility of murine colon adenocarcinoma cells. J Biochem 143(5):581–592 ArticlePubMedCAS Google Scholar
Kreuger J, Salmivirta M, Sturiale L, Gimenez-Gallego G, Lindahl U (2001) Sequence analysis of heparan sulfate epitopes with graded affinities for fibroblast growth factors 1 and 2. J Biol Chem 276(33):30744–30752 ArticlePubMedCAS Google Scholar
Lavker RM (1979) Structural alterations in exposed and unexposed aged skin. J Investig Dermatol 73(1):59–66 ArticlePubMedCAS Google Scholar
Lindner JR, Hillman PR, Barrett AL, Jackson MC, Perry TL, Park Y, Datta S (2007) The Drosophila Perlecan gene trol regulates multiple signaling pathways in different developmental contexts. BMC Dev Biol 7:121 ArticlePubMed Google Scholar
Luo Y, Ye S, Kan M, McKeehan WL (2006) Control of fibroblast growth factor (FGF) 7- and FGF1-induced mitogenesis and downstream signaling by distinct heparin octasaccharide motifs. J Biol Chem 281(30):21052–21061 ArticlePubMedCAS Google Scholar
Maas-Szabowski N, Shimotoyodome A, Fusenig NE (1999) Keratinocyte growth regulation in fibroblast cocultures via a double paracrine mechanism. J Cell Sci 112(Pt 12):1843–1853 PubMed Google Scholar
Malgouries S, Donovan M, Thibaut S, Bernard BA (2008) Heparanase 1: a key participant of inner root sheath differentiation program and hair follicle homeostasis. Exp Dermatol 17(12):1017–1023 Google Scholar
Nakajima M, Irimura T, Di Ferrante N, Nicolson GL (1984) Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. J Biol Chem 259(4):2283–2290 PubMedCAS Google Scholar
Parish CR, Freeman C, Hulett MD (2001) Heparanase: a key enzyme involved in cell invasion. Biochim Biophys Acta 1471(3):M99–M108 PubMedCAS Google Scholar
Patel VN, Knox SM, Likar KM, Lathrop CA, Hossain R, Eftekhari S, Whitelock JM, Elkin M, Vlodavsky I, Hoffman MP (2007) Heparanase cleavage of perlecan heparan sulfate modulates FGF10 activity during ex vivo submandibular gland branching morphogenesis. Development (Cambridge, England) 134(23):4177–4186 CAS Google Scholar
Perrimon N, Bernfield M (2000) Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404(6779):725–728 ArticlePubMedCAS Google Scholar
Pikas DS, Li JP, Vlodavsky I, Lindahl U (1998) Substrate specificity of heparanases from human hepatoma and platelets. J Biol Chem 273(30):18770–18777 ArticlePubMedCAS Google Scholar
Purushothaman A, Chen L, Yang Y, Sanderson RD (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283(47):32628–32636 ArticlePubMedCAS Google Scholar
Reiland J, Sanderson RD, Waguespack M, Barker SA, Long R, Carson DD, Marchetti D (2004) Heparanase degrades syndecan-1 and perlecan heparan sulfate: functional implications for tumor cell invasion. J Biol Chem 279(9):8047–8055 ArticlePubMedCAS Google Scholar
Reinheckel T, Hagemann S, Dollwet-Mack S, Martinez E, Lohmuller T, Zlatkovic G, Tobin DJ, Maas-Szabowski N, Peters C (2005) The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling. J Cell Sci 118(Pt 15):3387–3395 ArticlePubMedCAS Google Scholar
Shafat I, Vlodavsky I, Ilan N (2006) Characterization of mechanisms involved in secretion of active heparanase. J Biol Chem 281(33):23804–23811 ArticlePubMedCAS Google Scholar
Spencer JL, Stone PJ, Nugent MA (2006) New insights into the inhibition of human neutrophil elastase by heparin. Biochemistry 45(30):9104–9120 ArticlePubMedCAS Google Scholar
Tammela T, He Y, Lyytikka J, Jeltsch M, Markkanen J, Pajusola K, Yla-Herttuala S, Alitalo K (2007) Distinct architecture of lymphatic vessels induced by chimeric vascular endothelial growth factor-C/vascular endothelial growth factor heparin-binding domain fusion proteins. Circ Res 100(10):1468–1475 ArticlePubMedCAS Google Scholar
Vlodavsky I, Friedmann Y (2001) Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J Clin Investig 108(3):341–347 PubMedCAS Google Scholar
Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 15(2):177–186 ArticlePubMedCAS Google Scholar
Whitelock JM, Iozzo RV (2005) Heparan sulfate: a complex polymer charged with biological activity. Chem Rev 105(7):2745–2764 ArticlePubMedCAS Google Scholar
Yano K, Kadoya K, Kajiya K, Hong YK, Detmar M (2005) Ultraviolet B irradiation of human skin induces an angiogenic switch that is mediated by upregulation of vascular endothelial growth factor and by downregulation of thrombospondin-1. Br J Dermatol 152(1):115–121 ArticlePubMedCAS Google Scholar
Zcharia E, Zilka R, Yaar A, Yacoby-Zeevi O, Zetser A, Metzger S, Sarid R, Naggi A, Casu B, Ilan N, Vlodavsky I, Abramovitch R (2005) Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models. Faseb J 19(2):211–221 ArticlePubMedCAS Google Scholar