Translational Control in the Caenorhabditis elegans Germ Line (original) (raw)
Ahringer J, Kimble J (1991) Control of the sperm-oocyte switch in Caenorhabditis elegans hermaphrodites by the fem-3 3′ untranslated region. Nature 349(6307):346–348. doi:10.1038/349346a0 PubMedCAS Google Scholar
Amiri A, Keiper BD, Kawasaki I, Fan Y, Kohara Y, Rhoads RE, Strome S (2001) An isoform of eIF4E is a component of germ granules and is required for spermatogenesis in C. elegans. Development 128(20):3899–3912 PubMedCAS Google Scholar
Ariz M, Mainpal R, Subramaniam K (2009) C. elegans RNA-binding proteins PUF-8 and MEX-3 function redundantly to promote germline stem cell mitosis. Dev Biol 326(2):295–304. doi:10.1016/j.ydbio.2008.11.024 PubMedCAS Google Scholar
Arur S, Ohmachi M, Nayak S, Hayes M, Miranda A, Hay A, Golden A, Schedl T (2009) Multiple ERK substrates execute single biological processes in Caenorhabditis elegans germ-line development. Proc Natl Acad Sci USA 106(12):4776–4781. doi:10.1073/pnas.0812285106 PubMedCAS Google Scholar
Arur S, Ohmachi M, Berkseth M, Nayak S, Hansen D, Zarkower D, Schedl T (2011) MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module. Dev Cell 20(5):677–688. doi:10.1016/j.devcel.2011.04.009 PubMedCAS Google Scholar
Audhya A, Hyndman F, McLeod IX, Maddox AS, Yates JR 3rd, Desai A, Oegema K (2005) A complex containing the Sm protein CAR-1 and the RNA helicase CGH-1 is required for embryonic cytokinesis in Caenorhabditis elegans. J Cell Biol 171(2):267–279. doi:10.1083/jcb.200506124 PubMedCAS Google Scholar
Austin J, Kimble J (1987) glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell 51(4):589–599 PubMedCAS Google Scholar
Bachorik JL, Kimble J (2005) Redundant control of the Caenorhabditis elegans sperm/oocyte switch by PUF-8 and FBF-1, two distinct PUF RNA-binding proteins. Proc Natl Acad Sci USA 102(31):10893–10897. doi:10.1073/pnas.0504593102 PubMedCAS Google Scholar
Baer BW, Kornberg RD (1980) Repeating structure of cytoplasmic poly(A)-ribonucleoprotein. Proc Natl Acad Sci USA 77(4):1890–1892 PubMedCAS Google Scholar
Baer BW, Kornberg RD (1983) The protein responsible for the repeating structure of cytoplasmic poly(A)-ribonucleoprotein. J Cell Biol 96(3):717–721 PubMedCAS Google Scholar
Barnard DC, Cao Q, Richter JD (2005) Differential phosphorylation controls Maskin association with eukaryotic translation initiation factor 4E and localization on the mitotic apparatus. Mol Cell Biol 25(17):7605–7615. doi:10.1128/MCB.25.17.7605-7615.2005 PubMedCAS Google Scholar
Barton MK, Kimble J (1990) fog-1, a regulatory gene required for specification of spermatogenesis in the germ line of Caenorhabditis elegans. Genetics 125(1):29–39 PubMedCAS Google Scholar
Barton MK, Schedl TB, Kimble J (1987) Gain-of-function mutations of fem-3, a sex-determination gene in Caenorhabditis elegans. Genetics 115(1):107–119 PubMedCAS Google Scholar
Bernstein D, Hook B, Hajarnavis A, Opperman L, Wickens M (2005) Binding specificity and mRNA targets of a C. elegans PUF protein, FBF-1. RNA 11(4):447–458. doi:10.1261/rna.7255805
Biedermann B, Wright J, Senften M, Kalchhauser I, Sarathy G, Lee MH, Ciosk R (2009) Translational repression of cyclin E prevents precocious mitosis and embryonic gene activation during C. elegans meiosis. Dev Cell 17(3):355–364. doi:10.1016/j.devcel.2009.08.003 PubMedCAS Google Scholar
Boag PR, Nakamura A, Blackwell TK (2005) A conserved RNA-protein complex component involved in physiological germline apoptosis regulation in C. elegans. Development 132(22):4975–4986. doi:10.1242/dev.02060 PubMedCAS Google Scholar
Boag PR, Atalay A, Robida S, Reinke V, Blackwell TK (2008) Protection of specific maternal messenger RNAs by the P body protein CGH-1 (Dhh1/RCK) during Caenorhabditis elegans oogenesis. J Cell Biol 182(3):543–557. doi:10.1083/jcb.200801183 PubMedCAS Google Scholar
Bourc’his D, Voinnet O (2010) A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 330(6004):617–622. doi:10.1126/science.1194776 PubMed Google Scholar
Bowerman B, Kurz T (2006) Degrade to create: developmental requirements for ubiquitin-mediated proteolysis during early C. elegans embryogenesis. Development 133(5):773–784. doi:10.1242/dev.02276 PubMedCAS Google Scholar
Buchan JR, Yoon JH, Parker R (2011) Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae. J Cell Sci 124(Pt 2):228–239. doi:10.1242/jcs.078444 PubMedCAS Google Scholar
Buchet-Poyau K, Courchet J, Le Hir H, Seraphin B, Scoazec JY, Duret L, Domon-Dell C, Freund JN, Billaud M (2007) Identification and characterization of human Mex-3 proteins, a novel family of evolutionarily conserved RNA-binding proteins differentially localized to processing bodies. Nucleic Acids Res 35(4):1289–1300. doi:10.1093/nar/gkm016 PubMedCAS Google Scholar
Ceron J, Rual JF, Chandra A, Dupuy D, Vidal M, van den Heuvel S (2007) Large-scale RNAi screens identify novel genes that interact with the C. elegans retinoblastoma pathway as well as splicing-related components with synMuv B activity. BMC Dev Biol 7:30. doi:10.1186/1471-213X-7-30 PubMed Google Scholar
Chen T, Damaj BB, Herrera C, Lasko P, Richard S (1997) Self-association of the single-KH-domain family members Sam68, GRP33, GLD-1, and Qk1: role of the KH domain. Mol Cell Biol 17(10):5707–5718 PubMedCAS Google Scholar
Chu DS, Shakes DC (2012) Spermatogenesis. Advances in Experimental Medicine and Biology 757:171–203. (Chap. 7, this volume) Springer, New York Google Scholar
Ciosk R, DePalma M, Priess JR (2004) ATX-2, the C. elegans ortholog of ataxin 2, functions in translational regulation in the germline. Development 131(19):4831–4841. doi:10.1242/dev.01352 PubMedCAS Google Scholar
Ciosk R, DePalma M, Priess JR (2006) Translational regulators maintain totipotency in the Caenorhabditis elegans germline. Science 311(5762):851–853. doi:10.1126/science.1122491 PubMedCAS Google Scholar
Clark-Maguire S, Mains PE (1994a) Localization of the mei-1 gene product of Caenorhaditis elegans, a meiotic-specific spindle component. J Cell Biol 126(1):199–209 PubMedCAS Google Scholar
Clark-Maguire S, Mains PE (1994b) mei-1, a gene required for meiotic spindle formation in Caenorhabditis elegans, is a member of a family of ATPases. Genetics 136(2):533–546 PubMedCAS Google Scholar
Clifford R, Lee MH, Nayak S, Ohmachi M, Giorgini F, Schedl T (2000) FOG-2, a novel F-box containing protein, associates with the GLD-1 RNA binding protein and directs male sex determination in the C. elegans hermaphrodite germline. Development 127(24):5265–5276 PubMedCAS Google Scholar
Conine CC, Batista PJ, Gu W, Claycomb JM, Chaves DA, Shirayama M, Mello CC (2010) Argonautes ALG-3 and ALG-4 are required for spermatogenesis-specific 26 G-RNAs and thermotolerant sperm in Caenorhabditis elegans. Proc Natl Acad Sci USA 107(8):3588–3593. doi:10.1073/pnas.0911685107 PubMedCAS Google Scholar
Contreras V, Richardson MA, Hao E, Keiper BD (2008) Depletion of the cap-associated isoform of translation factor eIF4G induces germline apoptosis in C. elegans. Cell Death Differ 15(8):1232–1242. doi:10.1038/cdd.2008.46 PubMedCAS Google Scholar
Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE, Gallegos M, Petcherski AG, Moulder G, Barstead R, Wickens M, Kimble J (2002) A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417(6889):660–663. doi:10.1038/nature754 PubMedCAS Google Scholar
Curtis D, Treiber DK, Tao F, Zamore PD, Williamson JR, Lehmann R (1997) A CCHC metal-binding domain in Nanos is essential for translational regulation. EMBO J 16(4):834–843. doi:10.1093/emboj/16.4.834 PubMedCAS Google Scholar
de Moor CH, Richter JD (1997) The Mos pathway regulates cytoplasmic polyadenylation in Xenopus oocytes. Mol Cell Biol 17(11):6419–6426 PubMed Google Scholar
DeBella LR, Hayashi A, Rose LS (2006) LET-711, the Caenorhabditis elegans NOT1 ortholog, is required for spindle positioning and regulation of microtubule length in embryos. Mol Biol Cell 17(11):4911–4924. doi:10.1091/mbc.E06-02-0107 PubMedCAS Google Scholar
Decker CJ, Parker R (1993) A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev 7(8):1632–1643 PubMedCAS Google Scholar
Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ (2004) Processing of primary microRNAs by the microprocessor complex. Nature 432(7014):231–235. doi:10.1038/nature03049 PubMedCAS Google Scholar
Detwiler MR, Reuben M, Li X, Rogers E, Lin R (2001) Two zinc finger proteins, OMA-1 and OMA-2, are redundantly required for oocyte maturation in C. elegans. Dev Cell 1(2):187–199 PubMedCAS Google Scholar
Dinkova TD, Keiper BD, Korneeva NL, Aamodt EJ, Rhoads RE (2005) Translation of a small subset of Caenorhabditis elegans mRNAs is dependent on a specific eukaryotic translation initiation factor 4E isoform. Mol Cell Biol 25(1):100–113. doi:10.1128/MCB.25.1.100-113.2005 PubMedCAS Google Scholar
Draper BW, Mello CC, Bowerman B, Hardin J, Priess JR (1996) MEX-3 is a KH domain protein that regulates blastomere identity in early C. elegans embryos. Cell 87(2):205–216 PubMedCAS Google Scholar
Eckmann CR, Kraemer B, Wickens M, Kimble J (2002) GLD-3, a bicaudal-C homolog that inhibits FBF to control germline sex determination in C. elegans. Dev Cell 3(5):697–710 PubMedCAS Google Scholar
Eckmann CR, Crittenden SL, Suh N, Kimble J (2004) GLD-3 and control of the mitosis/meiosis decision in the germline of Caenorhabditis elegans. Genetics 168(1):147–160. doi:10.1534/genetics.104.029264 PubMedCAS Google Scholar
Edwards TA, Pyle SE, Wharton RP, Aggarwal AK (2001) Structure of Pumilio reveals similarity between RNA and peptide binding motifs. Cell 105(2):281–289 PubMedCAS Google Scholar
Francis R, Barton MK, Kimble J, Schedl T (1995a) gld-1, a tumor suppressor gene required for oocyte development in Caenorhabditis elegans. Genetics 139(2):579–606 PubMedCAS Google Scholar
Francis R, Maine E, Schedl T (1995b) Analysis of the multiple roles of gld-1 in germline development: interactions with the sex determination cascade and the glp-1 signaling pathway. Genetics 139(2):607–630 PubMedCAS Google Scholar
Furuichi Y, LaFiandra A, Shatkin AJ (1977) 5′-Terminal structure and mRNA stability. Nature 266(5599):235–239 PubMedCAS Google Scholar
Garneau NL, Wilusz J, Wilusz CJ (2007) The highways and byways of mRNA decay. Nat Rev Mol Cell Biol 8(2):113–126. doi:10.1038/nrm2104 PubMedCAS Google Scholar
Gebauer F, Hentze MW (2004) Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5(10):827–835. doi:10.1038/nrm1488 PubMedCAS Google Scholar
Goodwin EB, Okkema PG, Evans TC, Kimble J (1993) Translational regulation of tra-2 by its 3′ untranslated region controls sexual identity in C. elegans. Cell 75(2):329–339 PubMedCAS Google Scholar
Goodwin EB, Hofstra K, Hurney CA, Mango S, Kimble J (1997) A genetic pathway for regulation of tra-2 translation. Development 124(3):749–758 PubMedCAS Google Scholar
Graves LE, Segal S, Goodwin EB (1999) TRA-1 regulates the cellular distribution of the tra-2 mRNA in C. elegans. Nature 399(6738):802–805. doi:10.1038/21682 PubMedCAS Google Scholar
Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106(1):23–34 PubMedCAS Google Scholar
Guven-Ozkan T, Robertson SM, Nishi Y, Lin R (2010) zif-1 translational repression defines a second, mutually exclusive OMA function in germline transcriptional repression. Development 137(20):3373–3382. doi:10.1242/dev.055327 PubMedCAS Google Scholar
Hake LE, Mendez R, Richter JD (1998) Specificity of RNA binding by CPEB: requirement for RNA recognition motifs and a novel zinc finger. Mol Cell Biol 18(2):685–693 PubMedCAS Google Scholar
Han T, Manoharan AP, Harkins TT, Bouffard P, Fitzpatrick C, Chu DS, Thierry-Mieg D, Thierry-Mieg J, Kim JK (2009) 26 G endo-siRNAs regulate spermatogenic and zygotic gene expression in Caenorhabditis elegans. Proc Natl Acad Sci USA 106(44):18674–18679. doi:10.1073/pnas.0906378106 PubMedCAS Google Scholar
Hanazawa M, Kawasaki I, Kunitomo H, Gengyo-Ando K, Bennett KL, Mitani S, Iino Y (2004) The Caenorhabditis elegans eukaryotic initiation factor 5A homologue, IFF-1, is required for germ cell proliferation, gametogenesis and localization of the P-granule component PGL-1. Mech Dev 121(3):213–224. doi:10.1016/j.mod.2004.02.001 PubMedCAS Google Scholar
Hansen D, Schedl T (2012) Stem cell proliferation versus meiotic fate decision in C. elegans. Advances in Experimental Medicine and Biology 757:71–99. (Chap. 4, this volume) Springer, New York Google Scholar
Hansen D, Wilson-Berry L, Dang T, Schedl T (2004) Control of the proliferation versus meiotic development decision in the C. elegans germline through regulation of GLD-1 protein accumulation. Development 131(1):93–104. doi:10.1242/dev.00916 PubMedCAS Google Scholar
Hasegawa E, Karashima T, Sumiyoshi E, Yamamoto M (2006) C. elegans CPB-3 interacts with DAZ-1 and functions in multiple steps of germline development. Dev Biol 295(2):689–699. doi:10.1016/j.ydbio.2006.04.002 PubMedCAS Google Scholar
Henderson MA, Cronland E, Dunkelbarger S, Contreras V, Strome S, Keiper BD (2009) A germline-specific isoform of eIF4E (IFE-1) is required for efficient translation of stored mRNAs and maturation of both oocytes and sperm. J Cell Sci 122(Pt 10):1529–1539. doi:10.1242/jcs.046771 PubMedCAS Google Scholar
Hunter CP, Kenyon C (1996) Spatial and temporal controls target pal-1 blastomere-specification activity to a single blastomere lineage in C. elegans embryos. Cell 87(2):217–226 PubMedCAS Google Scholar
Jackson RJ (2005) Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem Soc Trans 33(Pt 6):1231–1241. doi:10.1042/BST20051231 PubMedCAS Google Scholar
Jadhav S, Rana M, Subramaniam K (2008) Multiple maternal proteins coordinate to restrict the translation of C. elegans nanos-2 to primordial germ cells. Development 135(10):1803–1812. doi:10.1242/dev.013656 PubMedCAS Google Scholar
Jan E, Yoon JW, Walterhouse D, Iannaccone P, Goodwin EB (1997) Conservation of the C. elegans tra-2 3′UTR translational control. EMBO J 16(20):6301–6313. doi:10.1093/emboj/16.20.6301 PubMedCAS Google Scholar
Jan E, Motzny CK, Graves LE, Goodwin EB (1999) The STAR protein, GLD-1, is a translational regulator of sexual identity in Caenorhabditis elegans. EMBO J 18(1):258–269. doi:10.1093/emboj/18.1.258 PubMedCAS Google Scholar
Jankowska-Anyszka M, Lamphear BJ, Aamodt EJ, Harrington T, Darzynkiewicz E, Stolarski R, Rhoads RE (1998) Multiple isoforms of eukaryotic protein synthesis initiation factor 4E in Caenorhabditis elegans can distinguish between mono- and trimethylated mRNA cap structures. J Biol Chem 273(17):10538–10542 PubMedCAS Google Scholar
Jones AR, Schedl T (1995) Mutations in gld-1, a female germ cell-specific tumor suppressor gene in Caenorhabditis elegans, affect a conserved domain also found in Src-associated protein Sam68. Genes Dev 9(12):1491–1504 PubMedCAS Google Scholar
Jones AR, Francis R, Schedl T (1996) GLD-1, a cytoplasmic protein essential for oocyte differentiation, shows stage- and sex-specific expression during Caenorhabditis elegans germline development. Dev Biol 180(1):165–183. doi:10.1006/dbio.1996.0293 PubMedCAS Google Scholar
Jud MC, Czerwinski MJ, Wood MP, Young RA, Gallo CM, Bickel JS, Petty EL, Mason JM, Little BA, Padilla PA, Schisa JA (2008) Large P body-like RNPs form in C. elegans oocytes in response to arrested ovulation, heat shock, osmotic stress, and anoxia and are regulated by the major sperm protein pathway. Dev Biol 318(1):38–51. doi:10.1016/j.ydbio.2008.02.059 PubMedCAS Google Scholar
Kadyk LC, Kimble J (1998) Genetic regulation of entry into meiosis in Caenorhabditis elegans. Development 125(10):1803–1813 PubMedCAS Google Scholar
Kadyk LC, Lambie EJ, Kimble J (1997) glp-3 is required for mitosis and meiosis in the Caenorhabditis elegans germ line. Genetics 145(1):111–121 PubMedCAS Google Scholar
Kalchhauser I, Farley BM, Pauli S, Ryder SP, Ciosk R (2011) FBF represses the Cip/Kip cell-cycle inhibitor CKI-2 to promote self-renewal of germline stem cells in C. elegans. EMBO J. doi:10.1038/emboj.2011.263
Kato M, de Lencastre A, Pincus Z, Slack FJ (2009) Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome Biol 10(5):R54. doi:10.1186/gb-2009-10-5-r54 PubMed Google Scholar
Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P (2005) Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169(6):871–884. doi:10.1083/jcb.200502088 PubMedCAS Google Scholar
Keiper BD, Lamphear BJ, Deshpande AM, Jankowska-Anyszka M, Aamodt EJ, Blumenthal T, Rhoads RE (2000) Functional characterization of five eIF4E isoforms in Caenorhabditis elegans. J Biol Chem 275(14):10590–10596 PubMedCAS Google Scholar
Kershner AM, Kimble J (2010) Genome-wide analysis of mRNA targets for Caenorhabditis elegans FBF, a conserved stem cell regulator. Proc Natl Acad Sci USA 107(8):3936–3941. doi:10.1073/pnas.1000495107 PubMedCAS Google Scholar
Kim KW, Wilson TL, Kimble J (2010) GLD-2/RNP-8 cytoplasmic poly(A) polymerase is a broad-spectrum regulator of the oogenesis program. Proc Natl Acad Sci USA 107(40):17445–17450. doi:10.1073/pnas.1012611107 PubMedCAS Google Scholar
Kim S, Spike CA, Greenstein D (2012) Control of oocyte growth and meiotic maturation in C. elegans. Advances in Experimental Medicine and Biology 757:277–320. (Chap. 10, this volume) Springer, New York Google Scholar
Klass M, Dow B, Herndon M (1982) Cell-specific transcriptional regulation of the major sperm protein in Caenorhabditis elegans. Dev Biol 93(1):152–164 PubMedCAS Google Scholar
Knight SW, Bass BL (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293(5538):2269–2271. doi:10.1126/science.1062039 PubMedCAS Google Scholar
Ko S, Park JH, Lee AR, Kim E, Jiyoung K, Kawasaki I, Shim YH (2010) Two mutations in pab-1 encoding poly(A)-binding protein show similar defects in germline stem cell proliferation but different longevity in C. elegans. Mol Cells 30(2):167–172. doi:10.1007/s10059-010-0103-2 PubMedCAS Google Scholar
Kraemer B, Crittenden S, Gallegos M, Moulder G, Barstead R, Kimble J, Wickens M (1999) NANOS-3 and FBF proteins physically interact to control the sperm-oocyte switch in Caenorhabditis elegans. Curr Biol 9(18):1009–1018 PubMedCAS Google Scholar
Kuersten S, Goodwin EB (2003) The power of the 3′ UTR: translational control and development. Nat Rev Genet 4(8):626–637. doi:10.1038/nrg1125 PubMedCAS Google Scholar
Kuersten S, Segal SP, Verheyden J, LaMartina SM, Goodwin EB (2004) NXF-2, REF-1, and REF-2 affect the choice of nuclear export pathway for tra-2 mRNA in C. elegans. Mol Cell 14(5):599–610. doi:10.1016/j.molcel.2004.05.004 PubMedCAS Google Scholar
Lall S, Piano F, Davis RE (2005) Caenorhabditis elegans decapping proteins: localization and functional analysis of Dcp1, Dcp2, and DcpS during embryogenesis. Mol Biol Cell 16(12):5880–5890. doi:10.1091/mbc.E05-07-0622 PubMedCAS Google Scholar
Lamont LB, Crittenden SL, Bernstein D, Wickens M, Kimble J (2004) FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline. Dev Cell 7(5):697–707. doi:10.1016/j.devcel.2004.09.013 PubMedCAS Google Scholar
Lee MH, Schedl T (2001) Identification of in vivo mRNA targets of GLD-1, a maxi-KH motif containing protein required for C. elegans germ cell development. Genes Dev 15(18):2408–2420. doi:10.1101/gad.915901 Google Scholar
Lee MH, Schedl T (2004) Translation repression by GLD-1 protects its mRNA targets from nonsense-mediated mRNA decay in C. elegans. Genes Dev 18(9):1047–1059. doi:10.1101/gad.1188404 Google Scholar
Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854 PubMedCAS Google Scholar
Lee MH, Hook B, Lamont LB, Wickens M, Kimble J (2006) LIP-1 phosphatase controls the extent of germline proliferation in Caenorhabditis elegans. EMBO J 25(1):88–96. doi:10.1038/sj.emboj.7600901 PubMedCAS Google Scholar
Lee MH, Hook B, Pan G, Kershner AM, Merritt C, Seydoux G, Thomson JA, Wickens M, Kimble J (2007a) Conserved regulation of MAP kinase expression by PUF RNA-binding proteins. PLoS Genet 3(12):e233. doi:10.1371/journal.pgen.0030233 PubMed Google Scholar
Lee MH, Ohmachi M, Arur S, Nayak S, Francis R, Church D, Lambie E, Schedl T (2007b) Multiple functions and dynamic activation of MPK-1 extracellular signal-regulated kinase signaling in Caenorhabditis elegans germline development. Genetics 177(4):2039–2062. doi:10.1534/genetics.107.081356 PubMedCAS Google Scholar
Li W, Boswell R, Wood WB (2000) mag-1, a homolog of Drosophila mago nashi, regulates hermaphrodite germ-line sex determination in Caenorhabditis elegans. Dev Biol 218(2):172–182. doi:10.1006/dbio.1999.9593 PubMedCAS Google Scholar
Li W, DeBella LR, Guven-Ozkan T, Lin R, Rose LS (2009) An eIF4E-binding protein regulates katanin protein levels in C. elegans embryos. J Cell Biol 187(1):33–42. doi:10.1083/jcb.200903003 PubMedCAS Google Scholar
Lu R, Yigit E, Li WX, Ding SW (2009) An RIG-I-Like RNA helicase mediates antiviral RNAi downstream of viral siRNA biogenesis in Caenorhabditis elegans. PLoS Pathog 5(2):e1000286. doi:10.1371/journal.ppat.1000286 PubMed Google Scholar
Lublin AL, Evans TC (2007) The RNA-binding proteins PUF-5, PUF-6, and PUF-7 reveal multiple systems for maternal mRNA regulation during C. elegans oogenesis. Dev Biol 303(2):635–649. doi:10.1016/j.ydbio.2006.12.004 PubMedCAS Google Scholar
Lui DY, Colaiácovo MP (2012) Meiotic development in C. elegans. Advances in Experimental Medicine and Biology 757:133–170. (Chap. 6, this volume) Springer, New York Google Scholar
Luitjens C, Gallegos M, Kraemer B, Kimble J, Wickens M (2000) CPEB proteins control two key steps in spermatogenesis in C. elegans. Genes Dev 14(20):2596–2609 Google Scholar
Maciejowski J, Ahn JH, Cipriani PG, Killian DJ, Chaudhary AL, Lee JI, Voutev R, Johnsen RC, Baillie DL, Gunsalus KC, Fitch DH, Hubbard EJ (2005) Autosomal genes of autosomal/X-linked duplicated gene pairs and germ-line proliferation in Caenorhabditis elegans. Genetics 169(4):1997–2011. doi:10.1534/genetics.104.040121 PubMedCAS Google Scholar
Mainpal R, Priti A, Subramaniam K (2011) PUF-8 suppresses the somatic transcription factor PAL-1 expression in C. elegans germline stem cells. Dev Biol 360(1):195–207. doi:10.1016/j.ydbio.2011.09.021 PubMedCAS Google Scholar
Marin VA, Evans TC (2003) Translational repression of a C. elegans Notch mRNA by the STAR/KH domain protein GLD-1. Development 130(12):2623–2632 PubMedCAS Google Scholar
Maruyama R, Endo S, Sugimoto A, Yamamoto M (2005) Caenorhabditis elegans DAZ-1 is expressed in proliferating germ cells and directs proper nuclear organization and cytoplasmic core formation during oogenesis. Dev Biol 277(1):142–154. doi:10.1016/j.ydbio.2004.08.053 PubMedCAS Google Scholar
Mathews MB, Sonenberg N, Hershey J (2007) Translational control in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor Google Scholar
Mendez R, Richter JD (2001) Translational control by CPEB: a means to the end. Nat Rev Mol Cell Biol 2(7):521–529. doi:10.1038/35080081 PubMedCAS Google Scholar
Merritt C, Seydoux G (2010) The Puf RNA-binding proteins FBF-1 and FBF-2 inhibit the expression of synaptonemal complex proteins in germline stem cells. Development 137(11):1787–1798. doi:10.1242/dev.050799 PubMedCAS Google Scholar
Merritt C, Rasoloson D, Ko D, Seydoux G (2008) 3′ UTRs are the primary regulators of gene expression in the C. elegans germline. Curr Biol 18(19):1476–1482. doi:10.1016/j.cub.2008.08.013 PubMedCAS Google Scholar
Miyoshi H, Dwyer DS, Keiper BD, Jankowska-Anyszka M, Darzynkiewicz E, Rhoads RE (2002) Discrimination between mono- and trimethylated cap structures by two isoforms of Caenorhabditis elegans eIF4E. EMBO J 21(17):4680–4690 PubMedCAS Google Scholar
Molin L, Puisieux A (2005) C. elegans homologue of the Caf1 gene, which encodes a subunit of the CCR4-NOT complex, is essential for embryonic and larval development and for meiotic progression. Gene 358:73–81. doi:10.1016/j.gene.2005.05.023 Google Scholar
Mootz D, Ho DM, Hunter CP (2004) The STAR/Maxi-KH domain protein GLD-1 mediates a developmental switch in the translational control of C. elegans PAL-1. Development 131(14):3263–3272. doi:10.1242/dev.01196 PubMedCAS Google Scholar
Munroe D, Jacobson A (1990) mRNA poly(A) tail, a 3′ enhancer of translational initiation. Mol Cell Biol 10(7):3441–3455 PubMedCAS Google Scholar
Nakamura M, Ando R, Nakazawa T, Yudazono T, Tsutsumi N, Hatanaka N, Ohgake T, Hanaoka F, Eki T (2007) Dicer-related drh-3 gene functions in germ-line development by maintenance of chromosomal integrity in Caenorhabditis elegans. Genes Cells 12(9):997–1010. doi:10.1111/j.1365-2443.2007.01111.x PubMedCAS Google Scholar
Nakel K, Hartung SA, Bonneau F, Eckmann CR, Conti E (2010) Four KH domains of the C. elegans Bicaudal-C ortholog GLD-3 form a globular structural platform. RNA 16(11):2058–2067. doi:10.1261/rna.2315010 Google Scholar
Nelson MR, Leidal AM, Smibert CA (2004) Drosophila Cup is an eIF4E-binding protein that functions in Smaug-mediated translational repression. EMBO J 23(1):150–159. doi:10.1038/sj.emboj.7600026 PubMedCAS Google Scholar
Nolde MJ, Saka N, Reinert KL, Slack FJ (2007) The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3′UTR-mediated repression of the let-7 microRNA target gene, hbl-1. Dev Biol 305(2):551–563. doi:10.1016/j.ydbio.2007.02.040 PubMedCAS Google Scholar
Nykamp K, Lee MH, Kimble J (2008) C. elegans La-related protein, LARP-1, localizes to germline P bodies and attenuates Ras-MAPK signaling during oogenesis. RNA 14(7):1378–1389. doi:10.1261/rna.1066008 Google Scholar
Ogura K, Kishimoto N, Mitani S, Gengyo-Ando K, Kohara Y (2003) Translational control of maternal glp-1 mRNA by POS-1 and its interacting protein SPN-4 in Caenorhabditis elegans. Development 130(11):2495–2503 PubMedCAS Google Scholar
Opperman L, Hook B, DeFino M, Bernstein DS, Wickens M (2005) A single spacer nucleotide determines the specificities of two mRNA regulatory proteins. Nat Struct Mol Biol 12(11):945–951. doi:10.1038/nsmb1010 PubMedCAS Google Scholar
Otero LJ, Ashe MP, Sachs AB (1999) The yeast poly(A)-binding protein Pab1p stimulates in vitro poly(A)-dependent and cap-dependent translation by distinct mechanisms. EMBO J 18(11):3153–3163. doi:10.1093/emboj/18.11.3153 PubMedCAS Google Scholar
Pagano JM, Farley BM, Essien KI, Ryder SP (2009) RNA recognition by the embryonic cell fate determinant and germline totipotency factor MEX-3. Proc Natl Acad Sci USA 106(48):20252–20257. doi:10.1073/pnas.0907916106 PubMedCAS Google Scholar
Priess JR, Schnabel H, Schnabel R (1987) The glp-1 locus and cellular interactions in early C. elegans embryos. Cell 51(4):601–611 PubMedCAS Google Scholar
Reddy R, Singh R, Shimba S (1992) Methylated cap structures in eukaryotic RNAs: structure, synthesis and functions. Pharmacol Ther 54(3):249–267 PubMedCAS Google Scholar
Robertson S, Lin R (2012) The oocyte-to-embryo transition. Advances in Experimental Medicine and Biology, 757:351–372. (Chap. 12, this volume) Springer, New York Google Scholar
Rybarska A, Harterink M, Jedamzik B, Kupinski AP, Schmid M, Eckmann CR (2009) GLS-1, a novel P granule component, modulates a network of conserved RNA regulators to influence germ cell fate decisions. PLoS Genet 5(5):e1000494. doi:10.1371/journal.pgen.1000494 PubMed Google Scholar
Ryder SP, Frater LA, Abramovitz DL, Goodwin EB, Williamson JR (2004) RNA target specificity of the STAR/GSG domain post-transcriptional regulatory protein GLD-1. Nat Struct Mol Biol 11(1):20–28. doi:10.1038/nsmb706 PubMedCAS Google Scholar
Sachs A, Wahle E (1993) Poly(A) tail metabolism and function in eucaryotes. J Biol Chem 268(31):22955–22958 PubMedCAS Google Scholar
Sachs AB, Bond MW, Kornberg RD (1986) A single gene from yeast for both nuclear and cytoplasmic polyadenylate-binding proteins: domain structure and expression. Cell 45(6):827–835 PubMedCAS Google Scholar
Sachs AB, Davis RW, Kornberg RD (1987) A single domain of yeast poly(A)-binding protein is necessary and sufficient for RNA binding and cell viability. Mol Cell Biol 7(9):3268–3276 PubMedCAS Google Scholar
Schisa JA, Pitt JN, Priess JR (2001) Analysis of RNA associated with P granules in germ cells of C. elegans adults. Development 128(8):1287–1298 PubMedCAS Google Scholar
Schmid M, Kuchler B, Eckmann CR (2009) Two conserved regulatory cytoplasmic poly(A) polymerases, GLD-4 and GLD-2, regulate meiotic progression in C. elegans. Genes Dev 23(7):824–836. doi:10.1101/gad.494009 Google Scholar
Schumacher B, Hanazawa M, Lee MH, Nayak S, Volkmann K, Hofmann ER, Hengartner M, Schedl T, Gartner A (2005) Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis. Cell 120(3):357–368. doi:10.1016/j.cell.2004.12.009 Google Scholar
Segal SP, Graves LE, Verheyden J, Goodwin EB (2001) RNA-regulated TRA-1 nuclear export controls sexual fate. Dev Cell 1(4):539–551 PubMedCAS Google Scholar
Seydoux G, Fire A (1994) Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. Development 120(10):2823–2834 PubMedCAS Google Scholar
She X, Xu X, Fedotov A, Kelly WG, Maine EM (2009) Regulation of heterochromatin assembly on unpaired chromosomes during Caenorhabditis elegans meiosis by components of a small RNA-mediated pathway. PLoS Genet 5(8):e1000624. doi:10.1371/journal.pgen.1000624 PubMed Google Scholar
Sheth U, Pitt J, Dennis S, Priess JR (2010) Perinuclear P granules are the principal sites of mRNA export in adult C. elegans germ cells. Development 137(8):1305–1314. doi:10.1242/dev.044255 PubMedCAS Google Scholar
Shimotohno K, Kodama Y, Hashimoto J, Miura KI (1977) Importance of 5′-terminal blocking structure to stabilize mRNA in eukaryotic protein synthesis. Proc Natl Acad Sci USA 74(7):2734–2738 PubMedCAS Google Scholar
Simmer F, Moorman C, van der Linden AM, Kuijk E, van den Berghe PV, Kamath RS, Fraser AG, Ahringer J, Plasterk RH (2003) Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol 1(1):E12. doi:10.1371/journal.pbio.0000012 PubMed Google Scholar
Song A, Labella S, Korneeva NL, Keiper BD, Aamodt EJ, Zetka M, Rhoads RE (2010) A C. elegans eIF4E-family member upregulates translation at elevated temperatures of mRNAs encoding MSH-5 and other meiotic crossover proteins. J Cell Sci 123(Pt 13):2228–2237. doi:10.1242/jcs.063107 Google Scholar
Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E, Hewitson M, Holz C, Khan M, Lazik S, Martin C, Nitzsche B, Ruer M, Stamford J, Winzi M, Heinkel R, Roder M, Finell J, Hantsch H, Jones SJ, Jones M, Piano F, Gunsalus KC, Oegema K, Gonczy P, Coulson A, Hyman AA, Echeverri CJ (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434(7032):462–469. doi:10.1038/nature03353 PubMedCAS Google Scholar
Squirrell JM, Eggers ZT, Luedke N, Saari B, Grimson A, Lyons GE, Anderson P, White JG (2006) CAR-1, a protein that localizes with the mRNA decapping component DCAP-1, is required for cytokinesis and ER organization in Caenorhabditis elegans embryos. Mol Biol Cell 17(1):336–344. doi:10.1091/mbc.E05-09-0874 PubMedCAS Google Scholar
Srayko M, Buster DW, Bazirgan OA, McNally FJ, Mains PE (2000) MEI-1/MEI-2 katanin-like microtubule severing activity is required for Caenorhabditis elegans meiosis. Genes Dev 14(9):1072–1084 PubMedCAS Google Scholar
Starck J (1977) Autoradiographic study of RNA-synthesis in Caenorhabditis-elegans (Bergerac Variety) oogenesis. Biol Cellulaire 30(2):181 Google Scholar
Starck J, Gibert MA, Brun J, Bosch C (1983) Ribosomal-RNA synthesis and processing during oogenesis of the free living nematode Caenorhabditis-elegans. Comp Biochem Phys B 75(4):575–580 Google Scholar
Stebbins-Boaz B, Hake LE, Richter JD (1996) CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus. EMBO J 15(10):2582–2592 PubMedCAS Google Scholar
Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R, Richter JD (1999) Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell 4(6):1017–1027 PubMedCAS Google Scholar
Strome S (2005) Specification of the germ line. WormBook:1–10. doi:10.1895/wormbook.1.9.1
Stumpf CR, Kimble J, Wickens M (2008) A Caenorhabditis elegans PUF protein family with distinct RNA binding specificity. RNA 14(8):1550–1557. doi:10.1261/rna.1095908 PubMedCAS Google Scholar
Subramaniam K, Seydoux G (2003) Dedifferentiation of primary spermatocytes into germ cell tumors in C. elegans lacking the pumilio-like protein PUF-8. Curr Biol 13(2):134–139 PubMedCAS Google Scholar
Suh N, Jedamzik B, Eckmann CR, Wickens M, Kimble J (2006) The GLD-2 poly(A) polymerase activates gld-1 mRNA in the Caenorhabditis elegans germ line. Proc Natl Acad Sci USA 103(41):15108–15112. doi:10.1073/pnas.0607050103 PubMedCAS Google Scholar
Suh N, Crittenden SL, Goldstrohm A, Hook B, Thompson B, Wickens M, Kimble J (2009) FBF and its dual control of gld-1 expression in the Caenorhabditis elegans germline. Genetics 181(4):1249–1260. doi:10.1534/genetics.108.099440 PubMedCAS Google Scholar
Tabara H, Yigit E, Siomi H, Mello CC (2002) The dsRNA binding protein RDE-4 interacts with RDE-1, DCR-1, and a DExH-box helicase to direct RNAi in C. elegans. Cell 109(7):861–871 PubMedCAS Google Scholar
Tarun SZ Jr, Sachs AB (1995) A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev 9(23):2997–3007 PubMedCAS Google Scholar
Thompson SR, Goodwin EB, Wickens M (2000) Rapid deadenylation and Poly(A)-dependent translational repression mediated by the Caenorhabditis elegans tra-2 3′ untranslated region in Xenopus embryos. Mol Cell Biol 20(6):2129–2137 PubMedCAS Google Scholar
Thompson BE, Bernstein DS, Bachorik JL, Petcherski AG, Wickens M, Kimble J (2005) Dose-dependent control of proliferation and sperm specification by FOG-1/CPEB. Development 132(15):3471–3481. doi:10.1242/dev.01921 PubMedCAS Google Scholar
Tursun B, Patel T, Kratsios P, Hobert O (2011) Direct conversion of C. elegans germ cells into specific neuron types. Science 331(6015):304–308. doi:10.1126/science.1199082 Google Scholar
Vernet C, Artzt K (1997) STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet 13(12):479–484 PubMedCAS Google Scholar
Wang JT, Seydoux S (2012) Germ cell specification. Advances in Experimental Medicine and Biology 757:17– 39. (Chap. 2, this volume) Springer, New York Google Scholar
Wang L, Eckmann CR, Kadyk LC, Wickens M, Kimble J (2002) A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans. Nature 419(6904):312–316. doi:10.1038/nature01039 PubMedCAS Google Scholar
Wang X, Zhao Y, Wong K, Ehlers P, Kohara Y, Jones SJ, Marra MA, Holt RA, Moerman DG, Hansen D (2009a) Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE. BMC Genomics 10:213. doi:10.1186/1471-2164-10-213 PubMed Google Scholar
Wang Y, Opperman L, Wickens M, Hall TM (2009b) Structural basis for specific recognition of multiple mRNA targets by a PUF regulatory protein. Proc Natl Acad Sci USA 106(48):20186–20191. doi:10.1073/pnas.0812076106 PubMedCAS Google Scholar
Wells SE, Hillner PE, Vale RD, Sachs AB (1998) Circularization of mRNA by eukaryotic translation initiation factors. Mol Cell 2(1):135–140 PubMedCAS Google Scholar
Wickens M, Bernstein DS, Kimble J, Parker R (2002) A PUF family portrait: 3′UTR regulation as a way of life. Trends Genet 18(3):150–157 PubMedCAS Google Scholar
Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862 PubMedCAS Google Scholar
Wilkie GS, Dickson KS, Gray NK (2003) Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem Sci 28(4):182–188 PubMedCAS Google Scholar
Wright JE, Gaidatzis D, Senften M, Farley BM, Westhof E, Ryder SP, Ciosk R (2011) A quantitative RNA code for mRNA target selection by the germline fate determinant GLD-1. EMBO J 30(3):533–545. doi:10.1038/emboj.2010.334 PubMedCAS Google Scholar
Yu X, Vought VE, Conradt B, Maine EM (2006) Eukaryotic translation initiation factor 5B activity regulates larval growth rate and germline development in Caenorhabditis elegans. Genesis 44(9):412–418. doi:10.1002/dvg.20232 PubMedCAS Google Scholar
Zanetti S, Puoti A (2012) Sex determination in the C. elegans germline. Advances in Experimental Medicine and Biology 757:41–69. (Chap. 3, this volume) Springer, New York Google Scholar
Zanin E, Pacquelet A, Scheckel C, Ciosk R, Gotta M (2010) LARP-1 promotes oogenesis by repressing fem-3 in the C. elegans germline. J Cell Sci 123(Pt 16):2717–2724. doi:10.1242/jcs.066761 Google Scholar
Zhang B, Gallegos M, Puoti A, Durkin E, Fields S, Kimble J, Wickens MP (1997) A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390(6659):477–484. doi:10.1038/37297 PubMedCAS Google Scholar