New physics from high energy tops (original) (raw)
W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE]. ArticleADS Google Scholar
F. Feruglio, The Chiral approach to the electroweak interactions, Int. J. Mod. Phys.A 8 (1993) 4937 [hep-ph/9301281] [INSPIRE].
R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light Dynamical “Higgs Particle”, Phys. Lett.B 722 (2013) 330 [Erratum ibid.B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].
A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva, Vices and virtues of Higgs effective field theories at large energy, Phys. Rev.D 91 (2015) 055029 [arXiv:1406.7320] [INSPIRE]. ADS Google Scholar
A. Falkowski, B. Fuks, K. Mawatari, K. Mimasu, F. Riva and V. Sanz, Rosetta: an operator basis translator for Standard Model effective field theory, Eur. Phys. J.C 75 (2015) 583 [arXiv:1508.05895] [INSPIRE]. ArticleADS Google Scholar
V. Cirigliano, M. Gonzalez-Alonso and M.L. Graesser, Non-standard Charged Current Interactions: beta decays versus the LHC, JHEP02 (2013) 046 [arXiv:1210.4553] [INSPIRE]. ArticleADS Google Scholar
J. de Blas, M. Chala and J. Santiago, Global Constraints on Lepton-Quark Contact Interactions, Phys. Rev.D 88 (2013) 095011 [arXiv:1307.5068] [INSPIRE]. ADS Google Scholar
A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca and M. Son, Anomalous Triple Gauge Couplings in the Effective Field Theory Approach at the LHC, JHEP02 (2017) 115 [arXiv:1609.06312] [INSPIRE]. ArticleADS Google Scholar
M. Farina, G. Panico, D. Pappadopulo, J.T. Ruderman, R. Torre and A. Wulzer, Energy helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett.B 772 (2017) 210 [arXiv:1609.08157] [INSPIRE]. ArticleADS Google Scholar
A. Azatov, J. Elias-Miro, Y. Reyimuaji and E. Venturini, Novel measurements of anomalous triple gauge couplings for the LHC, JHEP10 (2017) 027 [arXiv:1707.08060] [INSPIRE]. ArticleADS Google Scholar
R. Franceschini, G. Panico, A. Pomarol, F. Riva and A. Wulzer, Electroweak Precision Tests in High-Energy Diboson Processes, JHEP02 (2018) 111 [arXiv:1712.01310] [INSPIRE]. ArticleADS Google Scholar
J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev.D 85 (2012) 071501 [Erratum ibid.D 88 (2013) 039903] [arXiv:1107.3143] [INSPIRE].
C. Zhang, N. Greiner and S. Willenbrock, Constraints on Non-standard Top Quark Couplings, Phys. Rev.D 86 (2012) 014024 [arXiv:1201.6670] [INSPIRE]. ADS Google Scholar
R. Röntsch and M. Schulze, Constraining couplings of top quarks to the Z boson in \( t\overline{t} \) + Z production at the LHC, JHEP07 (2014) 091 [Erratum ibid.1509 (2015) 132] [arXiv:1404.1005] [INSPIRE].
C. Degrande, F. Maltoni, J. Wang and C. Zhang, Automatic computations at next-to-leading order in QCD for top-quark flavor-changing neutral processes, Phys. Rev.D 91 (2015) 034024 [arXiv:1412.5594] [INSPIRE]. ADS Google Scholar
G. Durieux, F. Maltoni and C. Zhang, Global approach to top-quark flavor-changing interactions, Phys. Rev.D 91 (2015) 074017 [arXiv:1412.7166] [INSPIRE]. ADS Google Scholar
D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev.D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE]. ADS Google Scholar
C. Zhang, Single Top Production at Next-to-Leading Order in the Standard Model Effective Field Theory, Phys. Rev. Lett.116 (2016) 162002 [arXiv:1601.06163] [INSPIRE]. ArticleADS Google Scholar
O. Bessidskaia Bylund, F. Maltoni, I. Tsinikos, E. Vryonidou and C. Zhang, Probing top quark neutral couplings in the Standard Model Effective Field Theory at NLO in QCD, JHEP05 (2016) 052 [arXiv:1601.08193] [INSPIRE]. ArticleADS Google Scholar
V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev.D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE]. ADS Google Scholar
F. Maltoni, E. Vryonidou and C. Zhang, Higgs production in association with a top-antitop pair in the Standard Model Effective Field Theory at NLO in QCD, JHEP10 (2016) 123 [arXiv:1607.05330] [INSPIRE]. ArticleADS Google Scholar
D. Barducci et al., Interpreting top-quark LHC measurements in the standard-model effective field theory, arXiv:1802.07237 [INSPIRE].
M. Chala, J. Santiago and M. Spannowsky, Constraining four-fermion operators using rare top decays, arXiv:1809.09624 [INSPIRE].
CMS collaboration, Measurement of differential cross sections for the production of top quark pairs and of additional jets in lepton+jets events from pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev.D 97 (2018) 112003 [arXiv:1803.08856] [INSPIRE].
M. Czakon, P. Fiedler and A. Mitov, Total Top-Quark Pair-Production Cross Section at Hadron Colliders Through O(α 4 S ), Phys. Rev. Lett.110 (2013) 252004 [arXiv:1303.6254] [INSPIRE]. ArticleADS Google Scholar
M. Czakon, D. Heymes and A. Mitov, High-precision differential predictions for top-quark pairs at the LHC, Phys. Rev. Lett.116 (2016) 082003 [arXiv:1511.00549] [INSPIRE]. ArticleADS Google Scholar
M. Czakon, D. Heymes and A. Mitov, fastNLO tables for NNLO top-quark pair differential distributions, arXiv:1704.08551 [INSPIRE].
M. Czakon, D. Heymes, A. Mitov, D. Pagani, I. Tsinikos and M. Zaro, Top-pair production at the LHC through NNLO QCD and NLO EW, JHEP10 (2017) 186 [arXiv:1705.04105] [INSPIRE]. ArticleADS Google Scholar
ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, JHEP11 (2017) 191 [arXiv:1708.00727] [INSPIRE].
ATLAS collaboration, Measurements of \( t\overline{t} \) differential cross-sections of highly boosted top quarks decaying to all-hadronic final states in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Phys. Rev.D 98 (2018) 012003 [arXiv:1801.02052] [INSPIRE].
ATLAS collaboration, Measurements of top quark pair relative differential cross-sections with ATLAS in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J.C 73 (2013) 2261 [arXiv:1207.5644] [INSPIRE].
ATLAS collaboration, Measurements of normalized differential cross sections for \( t\overline{t} \) production in pp collisions at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Phys. Rev.D 90 (2014) 072004 [arXiv:1407.0371] [INSPIRE].
ATLAS collaboration, Differential top-antitop cross-section measurements as a function of observables constructed from final-state particles using pp collisions at \( \sqrt{s}=7 \) TeV in the ATLAS detector, JHEP06 (2015) 100 [arXiv:1502.05923] [INSPIRE].
ATLAS collaboration, Measurement of the differential cross-section of highly boosted top quarks as a function of their transverse momentum in \( \sqrt{s}=8 \) TeV proton-proton collisions using the ATLAS detector, Phys. Rev.D 93 (2016) 032009 [arXiv:1510.03818] [INSPIRE].
ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the lepton+jets channel in pp collisions at \( \sqrt{s}=8 \) TeV using the ATLAS detector, Eur. Phys. J.C 76 (2016) 538 [arXiv:1511.04716] [INSPIRE].
ATLAS collaboration, Measurement of top quark pair differential cross-sections in the dilepton channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with ATLAS, Phys. Rev.D 94 (2016) 092003 [arXiv:1607.07281] [INSPIRE].
ATLAS collaboration, Measurements of top-quark pair differential cross-sections in the eμ channel in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Eur. Phys. J.C 77 (2017) 292 [arXiv:1612.05220] [INSPIRE].
CMS collaboration, Measurement of differential top-quark pair production cross sections in pp colisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J.C 73 (2013) 2339 [arXiv:1211.2220] [INSPIRE].
CMS collaboration, Measurement of the differential cross section for top quark pair production in pp collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J.C 75 (2015) 542 [arXiv:1505.04480] [INSPIRE].
CMS collaboration, Measurement of the integrated and differential \( t\overline{t} \) production cross sections for high-p t top quarks in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev.D 94 (2016) 072002 [arXiv:1605.00116] [INSPIRE].
CMS collaboration, Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV, Phys. Rev.D 95 (2017) 092001 [arXiv:1610.04191] [INSPIRE].
CMS collaboration, Measurement of double-differential cross sections for top quark pair production in pp collisions at \( \sqrt{s}=8 \) TeV and impact on parton distribution functions, Eur. Phys. J.C 77 (2017) 459 [arXiv:1703.01630] [INSPIRE].
ATLAS collaboration, A search for \( t\overline{t} \) resonances using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP08 (2015) 148 [arXiv:1505.07018] [INSPIRE].
ATLAS collaboration, Search for Heavy Higgs Bosons A/H Decaying to a Top Quark Pair in pp Collisions at \( \sqrt{s}=8 \) TeV with the ATLAS Detector, Phys. Rev. Lett.119 (2017) 191803 [arXiv:1707.06025] [INSPIRE].
ATLAS collaboration, Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J.C 78 (2018) 565 [arXiv:1804.10823] [INSPIRE].
CMS collaboration, Search for resonant \( t\overline{t} \) production in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev.D 93 (2016) 012001 [arXiv:1506.03062] [INSPIRE].
CMS collaboration, Search for \( \mathrm{t}\overline{\mathrm{t}} \) resonances in highly boosted lepton+jets and fully hadronic final states in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP07 (2017) 001 [arXiv:1704.03366] [INSPIRE].
CMS collaboration, Search for resonant \( \mathrm{t}\overline{\mathrm{t}} \) production in proton-proton collisions at \( \sqrt{s}=13 \) TeV, submitted to: JHEP (2018) [arXiv:1810.05905] [INSPIRE].
A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett.117 (2016) 242002 [arXiv:1607.04266] [INSPIRE]. ArticleADS Google Scholar
NNPDF collaboration, Parton distributions for the LHC Run II, JHEP04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J.C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE]. ArticleADS Google Scholar
S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev.D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE]. ADS Google Scholar
Particle Data Group collaboration, Review of Particle Physics, Phys. Rev.D 98 (2018) 030001.
J.A. Aguilar-Saavedra, D. Amidei, A. Juste and M. Pérez-Victoria, Asymmetries in top quark pair production at hadron colliders, Rev. Mod. Phys.87 (2015) 421 [arXiv:1406.1798] [INSPIRE]. ArticleADS Google Scholar
M.P. Rosello and M. Vos, Constraints on four-fermion interactions from the \( t\overline{t} \) charge asymmetry at hadron colliders, Eur. Phys. J.C 76 (2016) 200 [arXiv:1512.07542] [INSPIRE]. ArticleADS Google Scholar
CDF collaboration, Measurement of the top quark forward-backward production asymmetry and its dependence on event kinematic properties, Phys. Rev.D 87 (2013) 092002 [arXiv:1211.1003] [INSPIRE].
D0 collaboration, Measurement of the Forward-Backward Asymmetry in Top Quark-Antiquark Production in pp Collisions using the Lepton+Jets Channel, Phys. Rev.D 90 (2014) 072011 [arXiv:1405.0421] [INSPIRE].
CMS collaboration, Measurement of the charge asymmetry in top quark pair production in pp collisions at \( \sqrt{s}=8 \) TeV using a template method, Phys. Rev.D 93 (2016) 034014 [arXiv:1508.03862] [INSPIRE].
ATLAS collaboration, Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J.C 76 (2016) 87 [Erratum ibid.C 77 (2017) 564] [arXiv:1509.02358] [INSPIRE].
ATLAS collaboration, Measurement of the charge asymmetry in highly boosted top-quark pair production in \( \sqrt{s}=8 \) TeV pp collision data collected by the ATLAS experiment, Phys. Lett.B 756 (2016) 52 [arXiv:1512.06092] [INSPIRE].
ATLAS collaboration, Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector, JHEP05 (2014) 059 [arXiv:1312.3524] [INSPIRE].
ATLAS collaboration, Measurement of the inclusive jet cross-section in proton-proton collisions at \( \sqrt{s}=7 \) TeV using 4_._5 fb −1 of data with the ATLAS detector, JHEP02 (2015) 153 [Erratum ibid.1509 (2015) 141] [arXiv:1410.8857] [INSPIRE].
CMS collaboration, Measurements of differential jet cross sections in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the CMS detector, Phys. Rev.D 87 (2013) 112002 [Erratum ibid.D 87 (2013) 119902] [arXiv:1212.6660] [INSPIRE].
ATLAS collaboration, Measurement of the \( b\overline{b} \) dijet cross section in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J.C 76 (2016) 670 [arXiv:1607.08430] [INSPIRE].
R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, in Proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the large and the small (TASI 09), Boulder U.S.A. (2009), pg. 235 [arXiv:1005.4269] [INSPIRE].
G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lect. Notes Phys.913 (2016) pp.1 [arXiv:1506.01961] [INSPIRE].
CMS collaboration, Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum and jets in proton–proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J.C 77 (2017) 578 [arXiv:1704.07323] [INSPIRE].
G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys.B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
CMS collaboration, Search for pair production of excited top quarks in the lepton + jets final state, Phys. Lett.B 778 (2018) 349 [arXiv:1711.10949] [INSPIRE].
ATLAS collaboration, A search for pair-produced resonances in four-jet final states at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Eur. Phys. J.C 78 (2018) 250 [arXiv:1710.07171] [INSPIRE].
R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and Minimal Flavour Violation in Supersymmetry, Eur. Phys. J.C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE]. ArticleADS Google Scholar
G. D’Agostini, A Multidimensional unfolding method based on Bayes’ theorem, Nucl. Instrum. Meth.A 362 (1995) 487 [INSPIRE]. ArticleADS Google Scholar
K. Cranmer and L. Heinrich, Recasting through reweighting, zenodo (2017).
M. Czakon, N.P. Hartland, A. Mitov, E.R. Nocera and J. Rojo, Pinning down the large-x gluon with NNLO top-quark pair differential distributions, JHEP04 (2017) 044 [arXiv:1611.08609] [INSPIRE]. ArticleADS Google Scholar
A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev.D 95 (2017) 065014 [arXiv:1607.05236] [INSPIRE]. ADS Google Scholar