Precision probes of QCD at high energies (original) (raw)
W. Buchmuller and D. Wyler, CP Violation and R Invariance in Supersymmetric Models of Strong and Electroweak Interactions, Phys. Lett.B 121 (1983) 321. ArticleADS Google Scholar
F. Feruglio, The Chiral approach to the electroweak interactions, Int. J. Mod. Phys.A 8 (1993) 4937 [hep-ph/9301281] [INSPIRE].
K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev.D 48 (1993) 2182 [INSPIRE]. ADS Google Scholar
Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev.D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].
G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP06 (2007) 045 [hep-ph/0703164] [INSPIRE].
B. Grinstein and M. Trott, A Higgs-Higgs bound state due to new physics at a TeV, Phys. Rev. D 76 (2007) 073002 [arXiv:0704.1505] [INSPIRE].
R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light Dynamical “Higgs Particle”, Phys. Lett.B 722 (2013) 330 [Erratum ibid.B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP10 (2013) 087 [arXiv:1308.2627] [INSPIRE]. ArticleADSMATH Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP01 (2014) 035 [arXiv:1310.4838] [INSPIRE]. ArticleADS Google Scholar
R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE]. ArticleADS Google Scholar
A. Falkowski, B. Fuks, K. Mawatari, K. Mimasu, F. Riva and V. sanz, Rosetta: an operator basis translator for Standard Model effective field theory, Eur. Phys. J.C 75 (2015) 583 [arXiv:1508.05895] [INSPIRE].
B. Henning, X. Lu, T. Melia and H. Murayama, 2, 84, 30, 993, 560, 15456, 11962, 261485, …: Higher dimension operators in the SM EFT, arXiv:1512.03433 [INSPIRE].
O. Domenech, A. Pomarol and J. Serra, Probing the SM with Dijets at the LHC, Phys. Rev.D 85 (2012) 074030 [arXiv:1201.6510] [INSPIRE].
A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva, Vices and virtues of Higgs effective field theories at large energy, Phys. Rev.D 91 (2015) 055029 [arXiv:1406.7320] [INSPIRE].
A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev.D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE].
A. Butter, O.J.P. É boli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn and M. Rauch, The Gauge-Higgs Legacy of the LHC Run I, JHEP07 (2016) 152 [arXiv:1604.03105] [INSPIRE].
A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca and M. Son, Anomalous Triple Gauge Couplings in the Effective Field Theory Approach at the LHC, JHEP02 (2017) 115 [arXiv:1609.06312] [INSPIRE]. ArticleADS Google Scholar
N. Raj, Anticipating nonresonant new physics in dilepton angular spectra at the LHC, Phys. Rev.D 95 (2017) 015011 [arXiv:1610.03795] [INSPIRE].
A. Greljo and D. Marzocca, High-pTdilepton tails and flavour physics, arXiv:1704.09015 [INSPIRE].
M. Farina, G. Panico, D. Pappadopulo, J.T. Ruderman, R. Torre and A. Wulzer, Energy helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett.B 772 (2017) 210 [arXiv:1609.08157] [INSPIRE]. Article Google Scholar
ATLAS collaboration, Measurement of dijet cross sections in pp collisions at 7 TeV centre-of-mass energy using the ATLAS detector, JHEP05 (2014) 059 [arXiv:1312.3524] [INSPIRE].
ATLAS collaboration, Measurement of the inclusive jet cross-section in proton-proton collisions at \( \sqrt{s}=7 \) TeV using 4_._5 fb −1 of data with the ATLAS detector, JHEP02 (2015) 153 [Erratum ibid.1509 (2015) 141] [arXiv:1410.8857] [INSPIRE].
CMS collaboration, Measurements of differential jet cross sections in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the CMS detector, Phys. Rev.D 87 (2013) 112002 [arXiv:1212.6660] [INSPIRE].
P.L. Cho and E.H. Simmons, Looking for gluon substructure at the Tevatron, Phys. Lett.B 323 (1994) 401 [hep-ph/9307345] [INSPIRE].
R.S. Chivukula, A.G. Cohen and E.H. Simmons, New strong interactions at the Tevatron?, Phys. Lett.B 380 (1996) 92 [hep-ph/9603311] [INSPIRE].
L.J. Dixon and Y. Shadmi, Testing gluon selfinteractions in three jet events at hadron colliders, Nucl. Phys.B 423 (1994) 3 [Erratum ibid.B 452 (1995) 724] [hep-ph/9312363] [INSPIRE].
R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys.B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].
A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity selection rules and noninterference for BSM amplitudes, Phys. Rev.D 95 (2017) 065014 [arXiv:1607.05236] [INSPIRE].
F. Krauss, S. Kuttimalai and T. Plehn, LHC multijet events as a probe for anomalous dimension-six gluon interactions, Phys. Rev.D 95 (2017) 035024 [arXiv:1611.00767] [INSPIRE].
ATLAS collaboration, Search for quark contact interactions in dijet angular distributions in pp collisions at \( \sqrt{s}=7 \) TeV measured with the ATLAS detector, Phys. Lett.B 694 (2011) 327 [arXiv:1009.5069] [INSPIRE].
ATLAS collaboration, Search for contact interactions and large extra dimensions in dilepton events from pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev.D 87 (2013) 015010 [arXiv:1211.1150] [INSPIRE].
ATLAS collaboration, ATLAS search for new phenomena in dijet mass and angular distributions using pp collisions at \( \sqrt{s}=7 \) TeV, JHEP01 (2013) 029 [arXiv:1210.1718] [INSPIRE].
ATLAS collaboration, Search for new phenomena in the dijet mass distribution using p − p collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev.D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].
ATLAS collaboration, Search for New Phenomena in Dijet Angular Distributions in Proton-Proton Collisions at \( \sqrt{s}=8 \) TeV Measured with the ATLAS Detector, Phys. Rev. Lett.114 (2015) 221802 [arXiv:1504.00357] [INSPIRE].
ATLAS collaboration, Search for new phenomena in dijet mass and angular distributions from pp collisions at \( \sqrt{s}= 13 \) TeV with the ATLAS detector, Phys. Lett.B 754 (2016) 302 [arXiv:1512.01530] [INSPIRE].
ATLAS collaboration, Search for new phenomena in dijet events using 37 fb −1 of pp collision data collected at \( \sqrt{s}=13 \) TeV with the ATLAS detector, arXiv:1703.09127 [INSPIRE].
CMS collaboration, Search for quark compositeness in dijet angular distributions from pp collisions at \( \sqrt{s}=7 \) TeV, JHEP05 (2012) 055 [arXiv:1202.5535] [INSPIRE].
ATLAS collaboration, Search for New Physics in Dijet Mass and Angular Distributions in pp Collisions at \( \sqrt{s}=7 \) TeV Measured with the ATLAS Detector, New J. Phys.13 (2011) 053044 [arXiv:1103.3864] [INSPIRE].
CMS collaboration, Search for pair-produced dijet resonances in four-jet final states in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett.110 (2013) 141802 [arXiv:1302.0531] [INSPIRE].
CMS collaboration, Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett.B 746 (2015) 79 [arXiv:1411.2646] [INSPIRE].
CMS collaboration, Search for new physics with dijet angular distributions in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP07 (2017) 013 [arXiv:1703.09986] [INSPIRE].
R.K. Ellis and J.C. Sexton, QCD Radiative Corrections to Parton Parton Scattering, Nucl. Phys.B 269 (1986) 445 [INSPIRE]. ArticleADS Google Scholar
R.K. Ellis, G. Marchesini and B.R. Webber, Soft Radiation in Parton Parton Scattering, Nucl. Phys.B 286 (1987) 643 [Erratum ibid.B 294 (1987) 1180] [INSPIRE].
Z. Kunszt and D.E. Soper, Calculation of jet cross-sections in hadron collisions at order α 3 S , Phys. Rev.D 46 (1992) 192 [INSPIRE]. ADS Google Scholar
J. Currie, E.W.N. Glover and J. Pires, Next-to-Next-to Leading Order QCD Predictions for Single Jet Inclusive Production at the LHC, Phys. Rev. Lett.118 (2017) 072002 [arXiv:1611.01460] [INSPIRE].
J. Currie, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, A. Huss and J. Pires, Precise predictions for dijet production at the LHC, arXiv:1705.10271 [INSPIRE].
CMS collaboration, Measurement of the double-differential inclusive jet cross section in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Eur. Phys. J.C 76 (2016) 451 [arXiv:1605.04436] [INSPIRE].
P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP11 (2004) 040 [hep-ph/0409146] [INSPIRE].
S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP11 (2007) 070 [arXiv:0709.2092] [INSPIRE]. ArticleADS Google Scholar
S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP06 (2010) 043 [arXiv:1002.2581] [INSPIRE]. ArticleADSMATH Google Scholar
NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys.G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].
T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
CDF collaboration, A. Abulencia et al., Measurement of the Inclusive Jet Cross Section using the k T algorithmin \( p\overline{p} \) Collisions at \( \sqrt{s}=1.96 \) TeV with the CDF II Detector, Phys. Rev. D 75 (2007) 092006 [Erratum ibid.D 75 (2007) 119901] [hep-ex/0701051] [INSPIRE].
ATLAS collaboration, Measurement of the inclusive jet cross section in pp collisions at \( \sqrt{s}=2.76 \) TeV and comparison to the inclusive jet cross section at \( \sqrt{s}=7 \) TeV using the ATLAS detector, Eur. Phys. J.C 73 (2013) 2509 [arXiv:1304.4739] [INSPIRE].
ATLAS collaboration, Measurement of the \( t\overline{t} \) production cross-section in pp collisions at \( \sqrt{s}=7 \) TeV using kinematic information of lepton+jets events, (2011).
ATLAS collaboration, Measurement of the cross section for top-quark pair production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector using final states with two high-pTleptons, JHEP05 (2012) 059 [arXiv:1202.4892] [INSPIRE].
ATLAS collaboration, Measurement of the \( t\overline{t} \) production cross-section in pp collisions at \( \sqrt{s}=8 \) TeV using eμ events with b-tagged jets, ATLAS-CONF-2013-097 (2013).
CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in the dilepton channel in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP11 (2012) 067 [arXiv:1208.2671] [INSPIRE].
CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in pp collisions at \( \sqrt{s}=7 \) TeV with lepton + jets final states, Phys. Lett.B 720 (2013) 83 [arXiv:1212.6682] [INSPIRE].
CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in the dilepton channel in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP02 (2014) 024 [Erratum ibid.1402 (2014) 102] [arXiv:1312.7582] [INSPIRE].
ATLAS collaboration, Measurement of the inclusive jet cross-sections in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, arXiv:1706.03192 [INSPIRE].
Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev.D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].
J. Gao, C.S. Li, J. Wang, H.X. Zhu and C.P. Yuan, Next-to-leading QCD effect to the quark compositeness search at the LHC, Phys. Rev. Lett.106 (2011) 142001 [arXiv:1101.4611] [INSPIRE]. ArticleADS Google Scholar
CMS collaboration, Search for contact interactions using the inclusive jet pTspectrum in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev.D 87 (2013) 052017 [arXiv:1301.5023] [INSPIRE].
G. Cacciapaglia, C. Csáki, G. Marandella and A. Strumia, The Minimal Set of Electroweak Precision Parameters, Phys. Rev.D 74 (2006) 033011 [hep-ph/0604111] [INSPIRE].
F. Pobbe, A. Wulzer and M. Zanetti, Setting limits on Effective Field Theories: the case of Dark Matter, arXiv:1704.00736 [INSPIRE].
J. Goodman and W. Shepherd, LHC Bounds on UV-Complete Models of Dark Matter, arXiv:1111.2359 [INSPIRE].
I.M. Shoemaker and L. Vecchi, Unitarity and Monojet Bounds on Models for DAMA, CoGeNT and CRESST-II, Phys. Rev.D 86 (2012) 015023 [arXiv:1112.5457] [INSPIRE].
G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC, Phys. Lett.B 728 (2014) 412 [arXiv:1307.2253] [INSPIRE]. ArticleADS Google Scholar
S. Profumo, W. Shepherd and T. Tait, Pitfalls of dark matter crossing symmetries, Phys. Rev.D 88 (2013) 056018 [arXiv:1307.6277] [INSPIRE].
G. Busoni, A. De Simone, J. Gramling, E. Morgante and A. Riotto, On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC, Part II: Complete Analysis for the s-channel, JCAP06 (2014) 060 [arXiv:1402.1275] [INSPIRE]. ArticleADSMathSciNet Google Scholar
G. Busoni, A. De Simone, T. Jacques, E. Morgante and A. Riotto, On the Validity of the Effective Field Theory for Dark Matter Searches at the LHC Part III: Analysis for the t-channel, JCAP09 (2014) 022 [arXiv:1405.3101] [INSPIRE]. ArticleADS Google Scholar
S. Matsumoto, S. Mukhopadhyay and Y.-L.S. Tsai, Singlet Majorana fermion dark matter: a comprehensive analysis in effective field theory, JHEP10 (2014) 155 [arXiv:1407.1859] [INSPIRE]. ArticleADS Google Scholar
S. Matsumoto, S. Mukhopadhyay and Y.-L.S. Tsai, Effective Theory of WIMP Dark Matter supplemented by Simplified Models: Singlet-like Majorana fermion case, Phys. Rev.D 94 (2016) 065034 [arXiv:1604.02230] [INSPIRE].
R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the Validity of the Effective Field Theory Approach to SM Precision Tests, JHEP07 (2016) 144 [arXiv:1604.06444] [INSPIRE]. ArticleADS Google Scholar
B.A. Dobrescu and F. Yu, Coupling-mass mapping of dijet peak searches, Phys. Rev.D 88 (2013) 035021 [arXiv:1306.2629] [INSPIRE].
ATLAS collaboration, Search for New Particles in Two-Jet Final States in 7 TeV Proton-Proton Collisions with the ATLAS Detector at the LHC, Phys. Rev. Lett.105 (2010) 161801 [arXiv:1008.2461] [INSPIRE].
ATLAS collaboration, Search for light dijet resonances with the ATLAS detector using a Trigger-Level Analysis in LHC pp collisions at \( \sqrt{s}=13 \) TeV, ATLAS-CONF-2016-030 (2016).
ATLAS collaboration, Search for New Phenomena in Dijet Events with the ATLAS Detector at \( \sqrt{s}=13 \) TeV with 2015 and 2016 data, ATLAS-CONF-2016-069 (2016).
CMS collaboration, Search for Dijet Resonances in 7 TeV pp Collisions at CMS, Phys. Rev. Lett.105 (2010) 211801 [arXiv:1010.0203] [INSPIRE].
CMS collaboration, Search for Resonances in the Dijet Mass Spectrum from 7 TeV pp Collisions at CMS, Phys. Lett.B 704 (2011) 123 [arXiv:1107.4771] [INSPIRE].
CMS collaboration, Search for narrow resonances and quantum black holes in inclusive and b-tagged dijet mass spectra from pp collisions at \( \sqrt{s}=7 \) TeV, JHEP01 (2013) 013 [arXiv:1210.2387] [INSPIRE].
CMS collaboration, Search for narrow resonances using the dijet mass spectrum in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev.D 87 (2013) 114015 [arXiv:1302.4794] [INSPIRE].
CMS collaboration, Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev.D 91 (2015) 052009 [arXiv:1501.04198] [INSPIRE].
CMS collaboration, Search for narrow resonances decaying to dijets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett.116 (2016) 071801 [arXiv:1512.01224] [INSPIRE].
CMS collaboration, Search for narrow resonances in dijet final states at \( \sqrt{s}=8 \) TeV with the novel CMS technique of data scouting, Phys. Rev. Lett.117 (2016) 031802 [arXiv:1604.08907] [INSPIRE].
CMS collaboration, Search for dijet resonances in proton-proton collisions at \( \sqrt{s}=13 \) TeV and constraints on dark matter and other models, Phys. Lett.B 769 (2017) 520 [arXiv:1611.03568] [INSPIRE].
CMS collaboration, Search for low mass vector resonances decaying to quark-antiquark pairs in proton-proton collisions at \( \sqrt{s}=13 \) TeV, arXiv:1705.10532 [INSPIRE].
F. Yu, Di-jet resonances at future hadron colliders: A Snowmass whitepaper, arXiv:1308.1077 [INSPIRE].
G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys.B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
J.C. Pati and A. Salam, Mirror Fermions, J/ψ Particles, Kolar Mine Events and Neutrino Anomaly, Phys. Lett.58B (1975) 333 [INSPIRE]. ArticleADS Google Scholar
J. Bagger, C. Schmidt and S. King, Axigluon Production in Hadronic Collisions, Phys. Rev.D 37 (1988) 1188 [INSPIRE]. ADS Google Scholar
S. Alioli, P. Nason, C. Oleari and E. Re, NLO Higgs boson production via gluon fusion matched with shower in POWHEG, JHEP04 (2009) 002 [arXiv:0812.0578] [INSPIRE]. ArticleADS Google Scholar
S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP09 (2009) 111 [Erratum ibid.1002 (2010) 011] [arXiv:0907.4076] [INSPIRE].
P. Skands, S. Carrazza and J. Rojo, Tuning PYTHIA 8.1: the Monash 2013 Tune, Eur. Phys. J.C 74 (2014) 3024 [arXiv:1404.5630] [INSPIRE].
ATLAS collaboration, Measurement of the Z/γ ∗ boson transverse momentum distribution in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP09 (2014) 145 [arXiv:1406.3660] [INSPIRE].
T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project, Eur. Phys. J.C 66 (2010) 503 [arXiv:0911.2985] [INSPIRE]. ArticleADS Google Scholar