W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE]. ArticleADS Google Scholar
C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev.177 (1969) 2247 [INSPIRE]. ArticleADS Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators I: formalism and λ dependence, JHEP10 (2013) 087 [arXiv:1308.2627] [INSPIRE]. ArticleADSMathSciNet Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP01 (2014) 035 [arXiv:1310.4838] [INSPIRE]. ArticleADS Google Scholar
R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE]. ArticleADS Google Scholar
R. Alonso, E.E. Jenkins and A.V. Manohar, Holomorphy without supersymmetry in the standard model effective field theory, arXiv:1409.0868 [INSPIRE].
R. Alonso, H.-M. Chang, E.E. Jenkins, A.V. Manohar and B. Shotwell, Renormalization group evolution of dimension-six baryon number violating operators, Phys. Lett.B 734 (2014) 302 [arXiv:1405.0486] [INSPIRE]. ArticleADS Google Scholar
G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys.B 645 (2002) 155 [hep-ph/0207036] [INSPIRE]. ArticleADS Google Scholar
D.C. Kennedy and B.W. Lynn, Electroweak radiative corrections with an effective Lagrangian: four fermion processes, Nucl. Phys.B 322 (1989) 1 [INSPIRE]. ArticleADS Google Scholar
M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett.65 (1990) 964 [INSPIRE]. ArticleADS Google Scholar
B. Holdom and J. Terning, Large corrections to electroweak parameters in technicolor theories, Phys. Lett.B 247 (1990) 88 [INSPIRE]. ArticleADS Google Scholar
M. Golden and L. Randall, Radiative corrections to electroweak parameters in technicolor theories, Nucl. Phys.B 361 (1991) 3 [INSPIRE]. ArticleADS Google Scholar
G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett.B 253 (1991) 161 [INSPIRE]. ArticleADS Google Scholar
M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev.D 46 (1992) 381 [INSPIRE]. ADS Google Scholar
Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev.D 86 (2012) 010001 [INSPIRE]. Google Scholar
B. Grinstein and M.B. Wise, Operator analysis for precision electroweak physics, Phys. Lett.B 265 (1991) 326 [INSPIRE]. ArticleADS Google Scholar
DELPHI collaboration, J. Abdallah et al., Measurements of CP-conserving trilinear gauge boson couplings WWV(V = γ, Z) in e + e − _collisions at LEP_2, Eur. Phys. J.C 66 (2010) 35 [arXiv:1002.0752] [INSPIRE]. ADS Google Scholar
ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept.427 (2006) 257 [hep-ex/0509008] [INSPIRE]. ADS Google Scholar
K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e + e − → W + W −, Nucl. Phys.B 282 (1987) 253 [INSPIRE]. ArticleADS Google Scholar
K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy constraints on electroweak three gauge boson couplings, Phys. Lett.B 283 (1992) 353 [INSPIRE]. ArticleADS Google Scholar
O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Scrutinizing the ZW + W − vertex at the Large Hadron Collider at 7 TeV, Phys. Lett.B 692 (2010) 20 [arXiv:1006.3562] [INSPIRE]. ArticleADS Google Scholar
T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust determination of the Higgs couplings: power to the data, Phys. Rev.D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE]. ADS Google Scholar
T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Determining triple gauge boson couplings from Higgs data, Phys. Rev. Lett.111 (2013) 011801 [arXiv:1304.1151] [INSPIRE]. ArticleADS Google Scholar
A. De Rujula, M.B. Gavela, P. Hernández and E. Masso, _The selfcouplings of vector bosons: does LEP-_1 obviate LEP-2?, Nucl. Phys.B 384 (1992) 3 [INSPIRE]. ArticleADS Google Scholar
G. Brooijmans et al., Les Houches 2013 — physics at TeV colliders: new physics working group report, arXiv:1405.1617 [INSPIRE].
A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev.D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE]. ADS Google Scholar
J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Geolocating the Higgs boson candidate at the LHC, Phys. Rev. Lett.111 (2013) 041801 [arXiv:1304.4936] [INSPIRE]. ArticleADS Google Scholar
B. Grinstein, C.W. Murphy and D. Pirtskhalava, Searching for new physics in the three-body decays of the Higgs-like particle, JHEP10 (2013) 077 [arXiv:1305.6938] [INSPIRE]. ArticleADS Google Scholar
G. Buchalla, O. Catà and G. D’Ambrosio, Nonstandard Higgs couplings from angular distributions in h → Zℓ+ℓ−, Eur. Phys. J.C 74 (2014) 2798 [arXiv:1310.2574] [INSPIRE]. ArticleADS Google Scholar
M. Gonzalez-Alonso and G. Isidori, The h → 4_ℓ spectrum at low m_ 34 : standard model vs. light new physics, Phys. Lett.B 733 (2014) 359 [arXiv:1403.2648] [INSPIRE]. ArticleADS Google Scholar