On the W&Y interpretation of high-energy Drell-Yan measurements (original) (raw)
M. Farina, G. Panico, D. Pappadopulo, J.T. Ruderman, R. Torre and A. Wulzer, Energy helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett. B772 (2017) 210 [arXiv:1609.08157] [INSPIRE]. ArticleADS Google Scholar
K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the Weak Boson Sector in e+e− → W+W−, Nucl. Phys. B282 (1987) 253 [INSPIRE]. ArticleADS Google Scholar
K. Hagiwara, J. Woodside and D. Zeppenfeld, Measuring the WWZ coupling at the Tevatron, Phys. Rev. D41 (1990) 2113 [INSPIRE]. ArticleADS Google Scholar
CMS collaboration, Measurement of the W+W−cross section in pp collisions at \( \sqrt{s} \) = 8 TeV and limits on anomalous gauge couplings, Eur. Phys. J. C76 (2016) 401 [arXiv:1507.03268] [INSPIRE].
ATLAS collaboration, Measurements of W_±_Z production cross sections in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector and limits on anomalous gauge boson self-couplings, Phys. Rev. D93 (2016) 092004 [arXiv:1603.02151] [INSPIRE].
A. Butter, O.J.P. Éboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn and M. Rauch, The gauge-Higgs legacy of the LHC Run I, JHEP07 (2016) 152 [arXiv:1604.03105] [INSPIRE]. ArticleADS Google Scholar
Z. Zhang, Time to go beyond triple-gauge-boson-coupling interpretation of W pair production, Phys. Rev. Lett.118 (2017) 011803 [arXiv:1610.01618] [INSPIRE].
D.R. Green, P. Meade and M.-A. Pleier, Multiboson interactions at the LHC, Rev. Mod. Phys.89 (2017) 035008 [arXiv:1610.07572] [INSPIRE].
A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva, Vices and virtues of Higgs effective field theories at large energy, Phys. Rev. D91 (2015) 055029 [arXiv:1406.7320] [INSPIRE].
A. Falkowski, M. Gonzalez-Alonso, A. Greljo and D. Marzocca, Global constraints on anomalous triple gauge couplings in effective field theory approach, Phys. Rev. Lett.116 (2016) 011801 [arXiv:1508.00581] [INSPIRE].
J. Baglio, S. Dawson and I.M. Lewis, An NLO QCD effective field theory analysis of W+W−production at the LHC including fermionic operators, Phys. Rev. D96 (2017) 073003 [arXiv:1708.03332] [INSPIRE].
R. Franceschini, G. Panico, A. Pomarol, F. Riva and A. Wulzer, Electroweak precision tests in high-energy diboson processes, JHEP02 (2018) 111 [arXiv:1712.01310] [INSPIRE]. ArticleADS Google Scholar
S. Banerjee, C. Englert, R.S. Gupta and M. Spannowsky, Probing electroweak precision physics via boosted Higgs-strahlung at the LHC, Phys. Rev. D98 (2018) 095012 [arXiv:1807.01796] [INSPIRE].
D. Liu and L.-T. Wang, Prospects for precision measurement of diboson processes in the semileptonic decay channel in future LHC runs, Phys. Rev. D99 (2019) 055001 [arXiv:1804.08688] [INSPIRE].
J. de Blas, M. Chala and J. Santiago, Global constraints on lepton-quark contact interactions, Phys. Rev. D88 (2013) 095011 [arXiv:1307.5068] [INSPIRE].
R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B703 (2004) 127 [hep-ph/0405040] [INSPIRE].
CLICdp collaboration, Top-quark physics at the CLIC electron-positron linear collider, JHEP11 (2019) 003 [arXiv:1807.02441] [INSPIRE].
D. Barducci et al., Interpreting top-quark LHC measurements in the standard-model effective field theory, arXiv:1802.07237 [INSPIRE].
G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP06 (2007) 045 [hep-ph/0703164] [INSPIRE].
ATLAS collaboration, Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP08 (2016) 009 [arXiv:1606.01736] [INSPIRE].
CMS collaboration, Measurements of the differential and double-differential Drell-Yan cross sections in proton-proton collisions at 8 TeV, CMS-PAS-SMP-14-003 (2014).
CMS collaboration, Measurement of the differential Drell-Yan cross section in proton-proton collisions at 13 TeV, CMS-PAS-SMP-16-009 (2016).
S. Alioli, W. Dekens, M. Girard and E. Mereghetti, NLO QCD corrections to SM-EFT dilepton and electroweak Higgs boson production, matched to parton shower in POWHEG, JHEP08 (2018) 205 [arXiv:1804.07407] [INSPIRE]. ArticleADS Google Scholar
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
C. Degrande, G. Durieux, F. Maltoni, K. Mimasu, E. Vryonidou and C. Zhang, Automated one-loop computations in the SMEFT, arXiv:2008.11743 [INSPIRE].
Y. Li and F. Petriello, Combining QCD and electroweak corrections to dilepton production in FEWZ, Phys. Rev. D86 (2012) 094034 [arXiv:1208.5967] [INSPIRE].
L. Barze, G. Montagna, P. Nason, O. Nicrosini and F. Piccinini, Implementation of electroweak corrections in the POWHEG BOX: single W production, JHEP04 (2012) 037 [arXiv:1202.0465] [INSPIRE]. ArticleADS Google Scholar
L. Barze, G. Montagna, P. Nason, O. Nicrosini, F. Piccinini and A. Vicini, Neutral current Drell-Yan with combined QCD and electroweak corrections in the POWHEG BOX, Eur. Phys. J. C73 (2013) 2474 [arXiv:1302.4606] [INSPIRE]. ArticleADS Google Scholar
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun.191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
S. Frixione, P. Nason and C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method, JHEP11 (2007) 070 [arXiv:0709.2092] [INSPIRE]. ArticleADS Google Scholar
S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B485 (1997) 291 [Erratum ibid.510 (1998) 503] [hep-ph/9605323] [INSPIRE].
A. Denner, B. Jantzen and S. Pozzorini, Two-loop electroweak next-to-leading logarithmic corrections to massless fermionic processes, Nucl. Phys. B761 (2007) 1 [hep-ph/0608326] [INSPIRE].
S. Pozzorini, Electroweak radiative corrections at high-energies, other thesis, 2001 [hep-ph/0201077] [INSPIRE].
J.H. Kühn, A.A. Penin and V.A. Smirnov, Summing up subleading Sudakov logarithms, Eur. Phys. J. C17 (2000) 97 [hep-ph/9912503] [INSPIRE].
J.H. Kühn, S. Moch, A.A. Penin and V.A. Smirnov, Next-to-next-to-leading logarithms in four fermion electroweak processes at high-energy, Nucl. Phys. B616 (2001) 286 [Erratum ibid.648 (2003) 455] [hep-ph/0106298] [INSPIRE].
B. Jantzen, J.H. Kühn, A.A. Penin and V.A. Smirnov, Two-loop electroweak logarithms in four-fermion processes at high energy, Nucl. Phys. B731 (2005) 188 [Erratum ibid.752 (2006) 327] [hep-ph/0509157] [INSPIRE].
A. Celis, J. Fuentes-Martin, A. Vicente and J. Virto, DsixTools: the standard model effective field theory toolkit, Eur. Phys. J. C77 (2017) 405 [arXiv:1704.04504] [INSPIRE]. ArticleADS Google Scholar
S. Brensing, S. Dittmaier, M. Krämer and A. Muck, Radiative corrections to W−boson hadroproduction: higher-order electroweak and supersymmetric effects, Phys. Rev. D77 (2008) 073006 [arXiv:0710.3309] [INSPIRE].
S. Dittmaier and M. Huber, Radiative corrections to the neutral-current Drell-Yan process in the Standard Model and its minimal supersymmetric extension, JHEP01 (2010) 060 [arXiv:0911.2329] [INSPIRE]. ArticleADS Google Scholar
C.M. Carloni Calame, G. Montagna, O. Nicrosini and A. Vicini, Precision electroweak calculation of the production of a high transverse-momentum lepton pair at hadron colliders, JHEP10 (2007) 109 [arXiv:0710.1722] [INSPIRE]. ArticleADS Google Scholar
U. Baur, Weak boson emission in hadron collider processes, Phys. Rev. D75 (2007) 013005 [hep-ph/0611241] [INSPIRE].
A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C75 (2015) 132 [arXiv:1412.7420] [INSPIRE].
J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys. G43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].
S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].
L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C75 (2015) 204 [arXiv:1412.3989] [INSPIRE]. ArticleADS Google Scholar
S. Alioli et al., Precision studies of observables in pp → W → lνland pp → γ, Z → l+l−processes at the LHC, Eur. Phys. J. C77 (2017) 280 [arXiv:1606.02330] [INSPIRE].
G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C71 (2011) 1554 [Erratum ibid.73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].