Effective theories of universal theories (original) (raw)
Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys.C 38 (2014) 090001 [INSPIRE].
Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and prospects for the LHC and ILC, Eur. Phys. J.C 74 (2014) 3046 [arXiv:1407.3792] [INSPIRE].
O. Eberhardt et al., Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations, Phys. Rev. Lett.109 (2012) 241802 [arXiv:1209.1101] [INSPIRE]. ArticleADS Google Scholar
M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak Precision Observables, New Physics and the Nature of a 126 GeV Higgs Boson, JHEP08 (2013) 106 [arXiv:1306.4644] [INSPIRE]. ArticleADS Google Scholar
M. Ciuchini, E. Franco, S. Mishima, M. Pierini, L. Reina and L. Silvestrini, Update of the electroweak precision fit, interplay with Higgs-boson signal strengths and model-independent constraints on new physics, arXiv:1410.6940 [INSPIRE].
J. Charles et al., Current status of the Standard Model CKM fit and constraints on Δ_F_ = 2 New Physics, Phys. Rev.D 91 (2015) 073007 [arXiv:1501.05013] [INSPIRE]. ADS Google Scholar
A.A. Petrov, S. Pokorski, J.D. Wells and Z. Zhang, Role of low-energy observables in precision Higgs boson analyses, Phys. Rev.D 91 (2015) 073001 [arXiv:1501.02803] [INSPIRE]. ADS Google Scholar
J. Erler, P. Langacker, S. Munir and E. Rojas, Improved Constraints on Z-prime Bosons from Electroweak Precision Data, JHEP08 (2009) 017 [arXiv:0906.2435] [INSPIRE]. ArticleADS Google Scholar
S. Heinemeyer, W. Hollik and G. Weiglein, Electroweak precision observables in the minimal supersymmetric standard model, Phys. Rept.425 (2006) 265 [hep-ph/0412214] [INSPIRE].
J.R. Ellis, S. Heinemeyer, K.A. Olive, A.M. Weber and G. Weiglein, The Supersymmetric Parameter Space in Light of B − physics Observables and Electroweak Precision Data, JHEP08 (2007) 083 [arXiv:0706.0652] [INSPIRE]. ArticleADS Google Scholar
J. Hubisz, P. Meade, A. Noble and M. Perelstein, Electroweak precision constraints on the littlest Higgs model with T parity, JHEP01 (2006) 135 [hep-ph/0506042] [INSPIRE].
K. Agashe and R. Contino, The Minimal composite Higgs model and electroweak precision tests, Nucl. Phys.B 742 (2006) 59 [hep-ph/0510164] [INSPIRE].
R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub and A. Tesi, A 125 GeV composite Higgs boson versus flavour and electroweak precision tests, JHEP05 (2013) 069 [arXiv:1211.5085] [INSPIRE]. ArticleADS Google Scholar
M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev.D 46 (1992) 381 [INSPIRE]. ADS Google Scholar
I. Maksymyk, C.P. Burgess and D. London, Beyond S, T and U, Phys. Rev.D 50 (1994) 529 [hep-ph/9306267] [INSPIRE].
R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys.B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].
E. Massó and V. Sanz, Limits on anomalous couplings of the Higgs boson to electroweak gauge bosons from LEP and the LHC, Phys. Rev.D 87 (2013) 033001 [arXiv:1211.1320] [INSPIRE]. ADS Google Scholar
T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust Determination of the Higgs Couplings: Power to the Data, Phys. Rev.D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE]. ADS Google Scholar
J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays h → γγ, γZ, JHEP08 (2013) 033 [arXiv:1302.5661] [INSPIRE]. ArticleADS Google Scholar
G. Buchalla, O. Catà, R. Rahn and M. Schlaffer, Effective Field Theory Analysis of New Physics in e + e − → W + W − at a Linear Collider, Eur. Phys. J.C 73 (2013) 2589 [arXiv:1302.6481] [INSPIRE]. ArticleADS Google Scholar
H. Mebane, N. Greiner, C. Zhang and S. Willenbrock, Constraints on Electroweak Effective Operators at One Loop, Phys. Rev.D 88 (2013) 015028 [arXiv:1306.3380] [INSPIRE]. ADS Google Scholar
J. Elias-Miro, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through D = 6 operators: constraints and one-loop anomalous dimensions, JHEP11 (2013) 066 [arXiv:1308.1879] [INSPIRE]. ArticleADS Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators I: Formalism and lambda Dependence, JHEP10 (2013) 087 [arXiv:1308.2627] [INSPIRE]. ArticleADSMathSciNet Google Scholar
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators II: Yukawa Dependence, JHEP01 (2014) 035 [arXiv:1310.4838] [INSPIRE]. ArticleADS Google Scholar
C.-Y. Chen, S. Dawson and C. Zhang, Electroweak Effective Operators and Higgs Physics, Phys. Rev.D 89 (2014) 015016 [arXiv:1311.3107] [INSPIRE]. ADS Google Scholar
R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE]. ArticleADS Google Scholar
H. Belusca-Maito, Effective Higgs Lagrangian and Constraints on Higgs Couplings, arXiv:1404.5343 [INSPIRE].
R. Alonso, H.-M. Chang, E.E. Jenkins, A.V. Manohar and B. Shotwell, Renormalization group evolution of dimension-six baryon number violating operators, Phys. Lett.B 734 (2014) 302 [arXiv:1405.0486] [INSPIRE]. ArticleADS Google Scholar
A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva, Vices and virtues of Higgs effective field theories at large energy, Phys. Rev.D 91 (2015) 055029 [arXiv:1406.7320] [INSPIRE]. ADS Google Scholar
L. Lehman, Extending the Standard Model Effective Field Theory with the Complete Set of Dimension-7 Operators, Phys. Rev.D 90 (2014) 125023 [arXiv:1410.4193] [INSPIRE]. ADS Google Scholar
L. Lehman and A. Martin, Hilbert Series for Constructing Lagrangians: expanding the phenomenologist’s toolbox, Phys. Rev.D 91 (2015) 105014 [arXiv:1503.07537] [INSPIRE]. ADS Google Scholar
G. Buchalla, O. Catà, A. Celis and C. Krause, Note on Anomalous Higgs-Boson Couplings in Effective Field Theory, Phys. Lett.B 750 (2015) 298 [arXiv:1504.01707] [INSPIRE]. ArticleADS Google Scholar
M. Gonzalez-Alonso, A. Greljo, G. Isidori and D. Marzocca, Electroweak bounds on Higgs pseudo-observables and h → 4_ℓ decays_, Eur. Phys. J.C 75 (2015) 341 [arXiv:1504.04018] [INSPIRE]. ArticleADS Google Scholar
A. Falkowski, Effective field theory approach to LHC Higgs data, arXiv:1505.00046 [INSPIRE].
J. de Blas, M. Chala and J. Santiago, Renormalization Group Constraints on New Top Interactions from Electroweak Precision Data, JHEP09 (2015) 189 [arXiv:1507.00757] [INSPIRE]. ArticleADS Google Scholar
J.D. Wells and Z. Zhang, Status and prospects of precision analyses with e + e − → W + W −, arXiv:1507.01594 [INSPIRE].
M. Bordone, A. Greljo, G. Isidori, D. Marzocca and A. Pattori, Higgs Pseudo Observables and Radiative Corrections, Eur. Phys. J.C 75 (2015) 385 [arXiv:1507.02555] [INSPIRE]. ArticleADS Google Scholar
C. Hartmann and M. Trott, Higgs Decay to Two Photons at One Loop in the Standard Model Effective Field Theory, Phys. Rev. Lett.115 (2015) 191801 [arXiv:1507.03568] [INSPIRE]. ArticleADS Google Scholar
A. Falkowski, M. Gonzalez-Alonso, A. Greljo and D. Marzocca, Global constraints on anomalous triple gauge couplings in effective field theory approach, Phys. Rev. Lett.116 (2016) 011801 [arXiv:1508.00581] [INSPIRE]. ArticleADS Google Scholar
L. Berthier and M. Trott, Consistent constraints on the Standard Model Effective Field Theory, arXiv:1508.05060 [INSPIRE].
A. Falkowski, B. Fuks, K. Mawatari, K. Mimasu, F. Riva and V. sanz, Rosetta: an operator basis translator for Standard Model effective field theory, Eur. Phys. J.C 75 (2015) 583 [arXiv:1508.05895] [INSPIRE].
R. Huo, Effective Field Theory of Integrating out Sfermions in the MSSM: Complete One-Loop Analysis, arXiv:1509.05942 [INSPIRE].
L. Lehman and A. Martin, Low-derivative operators of the Standard Model effective field theory via Hilbert series methods, arXiv:1510.00372 [INSPIRE].
A. David and G. Passarino, Through precision straits to next standard model heights, arXiv:1510.00414 [INSPIRE].
J. Brehmer, A. Freitas, D. Lopez-Val and T. Plehn, Pushing Higgs Effective Theory to its Limits, arXiv:1510.03443 [INSPIRE].
J. Ellis and T. You, Sensitivities of Prospective Future e + e − Colliders to Decoupled New Physics, arXiv:1510.04561 [INSPIRE].
G. Sanchez-Colon and J. Wudka, Effective operator contributions to the oblique parameters, Phys. Lett.B 432 (1998) 383 [hep-ph/9805366] [INSPIRE].
C. Grojean, W. Skiba and J. Terning, Disguising the oblique parameters, Phys. Rev.D 73 (2006) 075008 [hep-ph/0602154] [INSPIRE].
K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the Weak Boson Sector in e + e − → W + W −, Nucl. Phys.B 282 (1987) 253 [INSPIRE]. ArticleADS Google Scholar
LHC Higgs Cross section Working Group collaboration, A. David et al., LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle, arXiv:1209.0040 [INSPIRE].
LHC Higgs Cross section Working Group collaboration, M. Duehrssen-Debling et al., Higgs Basis: Proposal for an EFT basis choice, LHCHXSWG-INT-2015-001.
J.D. Wells and Z. Zhang, Precision Electroweak Analysis after the Higgs Boson Discovery, Phys. Rev.D 90 (2014) 033006 [arXiv:1406.6070] [INSPIRE]. ADS Google Scholar
J.D. Wells and Z. Zhang, Renormalization group evolution of the universal theories EFT, arXiv:1512.03056 [INSPIRE].
G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lect. Notes Phys.913 (2016) pp.- [arXiv:1506.01961] [INSPIRE].
G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An effective field theory approach, Nucl. Phys.B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE]. ArticleADS Google Scholar
G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP06 (2007) 045 [hep-ph/0703164] [INSPIRE].
S. Gori, J. Gu and L.-T. Wang, The Zbb Couplings at Future e + e − Colliders, arXiv:1508.07010 [INSPIRE].
A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the bbW+_W_− channel, Phys. Rev.D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE]. ADS Google Scholar
J. Baglio, A. Djouadi, R. Gröber, M.M. Mühlleitner, J. Quevillon and M. Spira, The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP04 (2013) 151 [arXiv:1212.5581] [INSPIRE]. ArticleADS Google Scholar
F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs Boson self-coupling measurements using ratios of cross sections, JHEP06 (2013) 016 [arXiv:1301.3492] [INSPIRE]. ArticleADS Google Scholar
A.J. Barr, M.J. Dolan, C. Englert and M. Spannowsky, Di-Higgs final states augMT2ed — selecting hh events at the high luminosity LHC, Phys. Lett.B 728 (2014) 308 [arXiv:1309.6318] [INSPIRE]. ArticleADS Google Scholar
V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-Pair Production and Measurement of the Triscalar Coupling at LHC(8,14), Phys. Lett.B 728 (2014) 433 [arXiv:1311.2931] [INSPIRE]. ArticleADS Google Scholar
D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard model Higgs boson pair production in the \( \left(b\overline{b}\right)\left(b\overline{b}\right) \) final state, JHEP08 (2014) 030 [arXiv:1404.7139] [INSPIRE]. Article Google Scholar
C.-R. Chen and I. Low, Double take on new physics in double Higgs boson production, Phys. Rev.D 90 (2014) 013018 [arXiv:1405.7040] [INSPIRE]. ADS Google Scholar
F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, _Higgs boson pair production in the D_=6 extension of the SM, JHEP04 (2015) 167 [arXiv:1410.3471] [INSPIRE]. ArticleADS Google Scholar
A.J. Barr, M.J. Dolan, C. Englert, D.E. Ferreira de Lima and M. Spannowsky, Higgs Self-Coupling Measurements at a 100 TeV Hadron Collider, JHEP02 (2015) 016 [arXiv:1412.7154] [INSPIRE]. ArticleADS Google Scholar
A. Azatov, R. Contino, G. Panico and M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion, Phys. Rev.D 92 (2015) 035001 [arXiv:1502.00539] [INSPIRE]. ADS Google Scholar
S. Dawson, A. Ismail and I. Low, What’s in the loop? The anatomy of double Higgs production, Phys. Rev.D 91 (2015) 115008 [arXiv:1504.05596] [INSPIRE]. ADS Google Scholar
M. Dall’Osso, T. Dorigo, C.A. Gottardo, A. Oliveira, M. Tosi and F. Goertz, Higgs Pair Production: Choosing Benchmarks With Cluster Analysis, arXiv:1507.02245 [INSPIRE].
G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett.B 253 (1991) 161 [INSPIRE]. ArticleADS Google Scholar
G. Altarelli, R. Barbieri and S. Jadach, Toward a model independent analysis of electroweak data, Nucl. Phys.B 369 (1992) 3 [Erratum ibid.B 376 (1992) 444] [INSPIRE].
G. Isidori, A.V. Manohar and M. Trott, Probing the nature of the Higgs-like Boson via \( h\to V\mathrm{\mathcal{F}} \) decays, Phys. Lett.B 728 (2014) 131 [arXiv:1305.0663] [INSPIRE]. ArticleADS Google Scholar
B. Grinstein, C.W. Murphy and D. Pirtskhalava, Searching for New Physics in the Three-Body Decays of the Higgs-like Particle, JHEP10 (2013) 077 [arXiv:1305.6938] [INSPIRE]. ArticleADS Google Scholar
G. Buchalla, O. Catà and G. D’Ambrosio, Nonstandard Higgs couplings from angular distributions in h → Zℓ + ℓ −, Eur. Phys. J.C 74 (2014) 2798 [arXiv:1310.2574] [INSPIRE]. ArticleADS Google Scholar
M. Beneke, D. Boito and Y.-M. Wang, Anomalous Higgs couplings in angular asymmetries of H → Zℓ + ℓ − and e + e − → HZ, JHEP11 (2014) 028 [arXiv:1406.1361] [INSPIRE]. ArticleADS Google Scholar