W. Buchmüller and D. Wyler, Effective lagrangian analysis of new interactions and flavor conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE].
C.N. Leung, S.T. Love and S. Rao, Low-energy manifestations of a new interaction scale: operator analysis, Z. Phys.C 31 (1986) 433 [INSPIRE].
C. Zhang and F. Maltoni, Top-quark decay into Higgs boson and a light quark at next-to-leading order in QCD, Phys. Rev.D 88 (2013) 054005 [arXiv:1305.7386] [INSPIRE].
C. Zhang, Effective field theory approach to top-quark decay at next-to-leading order in QCD, Phys. Rev.D 90 (2014) 014008 [arXiv:1404.1264] [INSPIRE].
C. Degrande, F. Maltoni, J. Wang and C. Zhang, Automatic computations at next-to-leading order in QCD for top-quark flavor-changing neutral processes, Phys. Rev.D 91 (2015) 034024 [arXiv:1412.5594] [INSPIRE].
D. Buarque Franzosi and C. Zhang, Probing the top-quark chromomagnetic dipole moment at next-to-leading order in QCD, Phys. Rev.D 91 (2015) 114010 [arXiv:1503.08841] [INSPIRE].
C. Zhang, Single top production at next-to-leading order in the standard model effective field theory, Phys. Rev. Lett.116 (2016) 162002 [arXiv:1601.06163] [INSPIRE]. ArticleADS Google Scholar
O. Bessidskaia Bylund et al., Probing top quark neutral couplings in the standard model effective field theory at NLO in QCD, JHEP05 (2016) 052 [arXiv:1601.08193] [INSPIRE]. ArticleADS Google Scholar
F. Maltoni, E. Vryonidou and C. Zhang, Higgs production in association with a top-antitop pair in the standard model effective field theory at NLO in QCD, JHEP10 (2016) 123 [arXiv:1607.05330] [INSPIRE]. ArticleADS Google Scholar
R. Röntsch and M. Schulze, Constraining couplings of top quarks to the Z boson in \( t\overline{t}+Z \) production at the LHC, JHEP07 (2014) 091 [Erratum ibid.09 (2015) 132] [arXiv:1404.1005] [INSPIRE].
C. Hartmann and M. Trott, Higgs decay to two photons at one loop in the standard model effective field theory, Phys. Rev. Lett.115 (2015) 191801 [arXiv:1507.03568] [INSPIRE]. ArticleADS Google Scholar
R. Gauld, B.D. Pecjak and D.J. Scott, One-loop corrections to \( h\to b\overline{b} \) and \( h\to \tau \overline{\tau} \) decays in the standard model dimension-6 EFT: four-fermion operators and the large-mtlimit, JHEP05 (2016) 080 [arXiv:1512.02508] [INSPIRE].
K. Mimasu, V. Sanz and C. Williams, Higher order QCD predictions for Associated Higgs production with anomalous couplings to gauge bosons, JHEP08 (2016) 039 [arXiv:1512.02572] [INSPIRE]. ArticleADS Google Scholar
C. Degrande et al., Electroweak Higgs boson production in the standard model effective field theory beyond leading order in QCD, Eur. Phys. J.C 77 (2017) 262 [arXiv:1609.04833] [INSPIRE].
C. Degrande et al., Probing top-Higgs non-standard interactions at the LHC, JHEP07 (2012) 036 [Erratum ibid.03 (2013) 032] [arXiv:1205.1065] [INSPIRE].
M. Schulze and Y. Soreq, Pinning down electroweak dipole operators of the top quark, Eur. Phys. J.C 76 (2016) 466 [arXiv:1603.08911] [INSPIRE].
F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Associated production of Higgs and single top at hadron colliders, Phys. Rev.D 64 (2001) 094023 [hep-ph/0106293] [INSPIRE].
S. Biswas, E. Gabrielli and B. Mele, Single top and Higgs associated production as a probe of the Htt coupling sign at the LHC, JHEP01 (2013) 088 [arXiv:1211.0499] [INSPIRE]. ArticleADS Google Scholar
M. Farina et al., Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson, JHEP05 (2013) 022 [arXiv:1211.3736] [INSPIRE]. ADS Google Scholar
F. Demartin, F. Maltoni, K. Mawatari and M. Zaro, Higgs production in association with a single top quark at the LHC, Eur. Phys. J.C 75 (2015) 267 [arXiv:1504.00611] [INSPIRE].
ATLAS collaboration, Measurement of the production cross-section of a single top quark in association with a Z boson in proton-proton collisions at 13 TeV with the ATLAS detector, Phys. Lett.B 780 (2018) 557 [arXiv:1710.03659] [INSPIRE].
CMS collaboration, Evidence for the standard model production of a Z boson with a single top quark in pp collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-TOP-16-020 (2016).
CMS collaboration, Measurement of the associated production of a single top quark and a Z boson in pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett.B 779 (2018) 358 [arXiv:1712.02825] [INSPIRE].
CMS collaboration, Search for the associated production of a Higgs boson with a single top quark in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP06 (2016) 177 [arXiv:1509.08159] [INSPIRE].
CMS collaboration, Search for \( H\to b\overline{b} \) in association with a single top quark as a test of Higgs boson couplings at 13 TeV, CMS-PAS-HIG-16-019 (2016).
CMS collaboration, Search for production of a Higgs boson and a single top quark in multilepton final states in proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-005 (2017).
J. Campbell, R.K. Ellis and R. Röntsch, Single top production in association with a Z boson at the LHC, Phys. Rev.D 87 (2013) 114006 [arXiv:1302.3856] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. ArticleADS Google Scholar
C. Zhang, Automating predictions for standard model effective field theory in MadGraph5_aMC@NLONLO predictions for effective field theory with MadGraph5 aMC@NLO, PoSRADCOR2015 (2016) 101 [arXiv:1601.03994] [INSPIRE].
G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys.B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
D. Barducci et al., Interpreting top-quark LHC measurements in the standard-model effective field theory, arXiv:1802.07237 [INSPIRE].
G. Durieux, F. Maltoni and C. Zhang, Global approach to top-quark flavor-changing interactions, Phys. Rev.D 91 (2015) 074017 [arXiv:1412.7166] [INSPIRE].
Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev.D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].
C. Grojean, W. Skiba and J. Terning, Disguising the oblique parameters, Phys. Rev.D 73 (2006) 075008 [hep-ph/0602154] [INSPIRE].
R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators III: gauge coupling dependence and phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE]. ArticleADS Google Scholar
K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev.D 48 (1993) 2182 [INSPIRE].
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators I: formalism and Λ dependence, JHEP10 (2013) 087 [arXiv:1308.2627] [INSPIRE].
E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group evolution of the standard model dimension six operators II: Yukawa dependence, JHEP01 (2014) 035 [arXiv:1310.4838] [INSPIRE]. ArticleADS Google Scholar
T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Determining triple gauge boson couplings from Higgs data, Phys. Rev. Lett.111 (2013) 011801 [arXiv:1304.1151] [INSPIRE].
A. Falkowski, M. Gonzalez-Alonso, A. Greljo and D. Marzocca, Global constraints on anomalous triple gauge couplings in effective field theory approach, Phys. Rev. Lett.116 (2016) 011801 [arXiv:1508.00581] [INSPIRE].
G. Bordes and B. van Eijk, On the associate production of a neutral intermediate mass Higgs boson with a single top quark at the LHC and SSC, Phys. Lett.B 299 (1993) 315 [INSPIRE].
S. Dawson, The effective W approximation, Nucl. Phys.B 249 (1985) 42 [INSPIRE].
Z. Kunszt and D.E. Soper, On the validity of the effective W approximation, Nucl. Phys.B 296 (1988) 253 [INSPIRE].
CMS collaboration, Search for the associated production of a Higgs boson with a top quark pair in final states with a τ lepton at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-003 (2017).
CMS collaboration, Search for Higgs boson production in association with top quarks in multilepton final states at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-004 (2017).
ATLAS collaboration, Evidence for the associated production of the Higgs boson and a top quark pair with the ATLAS detector, Phys. Rev.D 97 (2018) 072003 [arXiv:1712.08891] [INSPIRE].
ATLAS collaboration, Search for the standard model Higgs boson produced in association with top quarks and decaying into a bb pair in pp collisions at \( \sqrt{s}=13 \) YeV with the ATLAS detector, Phys. Rev.D 97 (2018) 072016 [arXiv:1712.08895] [INSPIRE].
C. Zhang, Constraining qqtt operators from four-top production: a case for enhanced EFT sensitivity, Chin. Phys.C 42 (2018) 023104 [arXiv:1708.05928] [INSPIRE].
CMS collaboration, Measurement of the single-top-quark t-channel cross section in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP12 (2012) 035 [arXiv:1209.4533] [INSPIRE].
CMS collaboration, Measurement of the t-channel single-top-quark production cross section and of the |Vtb| CKM matrix element in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP06 (2014) 090 [arXiv:1403.7366] [INSPIRE].
ATLAS collaboration, Comprehensive measurements of t-channel single top-quark production cross sections at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev.D 90 (2014) 112006 [arXiv:1406.7844] [INSPIRE].
ATLAS collaboration, Evidence for single top-quark production in the s-channel in proton-proton collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector using the Matrix Element Method, Phys. Lett.B 756 (2016) 228 [arXiv:1511.05980] [INSPIRE].
CMS collaboration, Search for s channel single top quark production in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP09 (2016) 027 [arXiv:1603.02555] [INSPIRE].
ATLAS collaboration, Measurement of the inclusive cross-sections of single top-quark and top-antiquark t-channel production in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP04 (2017) 086 [arXiv:1609.03920] [INSPIRE].
CMS collaboration, Cross section measurement of t-channel single top quark production in pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Lett.B 772 (2017) 752 [arXiv:1610.00678] [INSPIRE].
ATLAS collaboration, Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at 8 TeV using data collected by the ATLAS detector, Eur. Phys. J.C 77 (2017) 531 [arXiv:1702.02859] [INSPIRE].
C. Zhang, N. Greiner and S. Willenbrock, Constraints on non-standard top quark couplings, Phys. Rev.D 86 (2012) 014024 [arXiv:1201.6670] [INSPIRE].
A. Alloul et al., FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
P. de Aquino et al., ALOHA: Automatic Libraries Of Helicity Amplitudes for Feynman Diagram Computations, Comput. Phys. Commun.183 (2012) 2254 [arXiv:1108.2041] [INSPIRE]. ArticleADS Google Scholar
R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: The FKS subtraction, JHEP10 (2009) 003 [arXiv:0908.4272] [INSPIRE]. ArticleADS Google Scholar
NNPDF collaboration, R.D. Ball et al., Parton distributions for the LHC Run II, JHEP04 (2015) 040 [arXiv:1410.8849] [INSPIRE].
CMS collaboration, Search for production of a Higgs boson and a single top quark in multilepton final states in proton collisions at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-17-005 (2017).
J. Chang, K. Cheung, J.S. Lee and C.-T. Lu, Probing the top-Yukawa coupling in associated Higgs production with a single top quark, JHEP05 (2014) 062 [arXiv:1403.2053] [INSPIRE]. ArticleADS Google Scholar