C. Cheung and C.-H. Shen, Nonrenormalization Theorems without Supersymmetry, Phys. Rev. Lett.115 (2015) 071601 [arXiv:1505.01844].
A. Azatov, R. Contino, C.S. Machado and F. Riva, Helicity Selection Rules and Non-Interference for BSM Amplitudes, Phys. Rev.D 95 (2017) 065014 [arXiv:1607.05236].
A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca and M. Son, Anomalous Triple Gauge Couplings in the Effective Field Theory Approach at the LHC, JHEP02 (2017) 115 [arXiv:1609.06312]. ArticleADS Google Scholar
A. de Gouvea, J. Herrero-Garcia and A. Kobach, Neutrino Masses, Grand Unification, and Baryon Number Violation, Phys. Rev.D 90 (2014) 016011 [arXiv:1404.4057].
K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Low-energy effects of new interactions in the electroweak boson sector, Phys. Rev.D 48 (1993) 2182 [INSPIRE]. ADS Google Scholar
A. De Rújula, M.B. Gavela, P. Hernández and E. Massó, The selfcouplings of vector bosons: Does LEP-1 obviate LEP-2?, Nucl. Phys.B 384 (1992) 3 [INSPIRE]. ArticleADS Google Scholar
F. Feruglio, The chiral approach to the electroweak interactions, Int. J. Mod. Phys.A 8 (1993) 4937 [hep-ph/9301281] [INSPIRE].
C.P. Burgess, J. Matias and M. Pospelov, A Higgs or not a Higgs? What to do if you discover a new scalar particle, Int. J. Mod. Phys.A 17 (2002) 1841 [hep-ph/9912459] [INSPIRE].
B. Grinstein and M. Trott, A Higgs-Higgs bound state due to new physics at a TeV, Phys. Rev.D 76 (2007) 073002 [arXiv:0704.1505] [INSPIRE].
R. Alonso, M.B. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light Dynamical “Higgs Particle”, Phys. Lett.B 722 (2013) 330 [Erratum ibid.B 726 (2013) 926] [arXiv:1212.3305] [INSPIRE].
G. Buchalla, O. Catà and C. Krause, Complete Electroweak Chiral Lagrangian with a Light Higgs at NLO, Nucl. Phys.B 880 (2014) 552 [Erratum ibid.B 913 (2016) 475] [arXiv:1307.5017] [INSPIRE].
I. Brivio, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia and L. Merlo, The complete HEFT Lagrangian after the LHC Run I, Eur. Phys. J.C 76 (2016) 416 [arXiv:1604.06801] [INSPIRE]. ArticleADS Google Scholar
R. Alonso, E.E. Jenkins and A.V. Manohar, A Geometric Formulation of Higgs Effective Field Theory: Measuring the Curvature of Scalar Field Space, Phys. Lett.B 754 (2016) 335 [arXiv:1511.00724] [INSPIRE]. ArticleADSMATH Google Scholar
W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE]. ArticleADS Google Scholar
L. Lehman, Extending the Standard Model Effective Field Theory with the Complete Set of Dimension-7 Operators, Phys. Rev.D 90 (2014) 125023 [arXiv:1410.4193] [INSPIRE]. ADS Google Scholar
B. Henning, X. Lu, T. Melia and H. Murayama, 2_,_ 84_,_ 30_,_ 993_,_ 560_,_ 15456_,_ 11962_,_ 261485_, . . . :Higher dimension operators in the SM EFT_, arXiv:1512.03433 [INSPIRE].
H. Lehmann, K. Symanzik and W. Zimmermann, On the formulation of quantized field theories, Nuovo Cim.1 (1955) 205 [INSPIRE]. ArticleMATH Google Scholar
R. Alonso, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Evolution of the Standard Model Dimension Six Operators III: Gauge Coupling Dependence and Phenomenology, JHEP04 (2014) 159 [arXiv:1312.2014] [INSPIRE]. ArticleADS Google Scholar
M.J. Dugan, M. Golden and B. Grinstein, On the Hilbert space of the heavy quark effective theory, Phys. Lett.B 282 (1992) 142 [INSPIRE]. ArticleADS Google Scholar
M.E. Luke and A.V. Manohar, Reparametrization invariance constraints on heavy particle effective field theories, Phys. Lett.B 286 (1992) 348 [hep-ph/9205228] [INSPIRE].
A.V. Manohar and M.B. Wise, Inclusive semileptonic B and polarized Λ bdecays from QCD, Phys. Rev.D 49 (1994) 1310 [hep-ph/9308246] [INSPIRE].
A.V. Manohar, T. Mehen, D. Pirjol and I.W. Stewart, Reparameterization invariance for collinear operators, Phys. Lett.B 539 (2002) 59 [hep-ph/0204229] [INSPIRE].
M. Neubert, Heavy quark symmetry, Phys. Rept.245 (1994) 259 [hep-ph/9306320] [INSPIRE].
J. Heinonen, R.J. Hill and M.P. Solon, Lorentz invariance in heavy particle effective theories, Phys. Rev.D 86 (2012) 094020 [arXiv:1208.0601] [INSPIRE].
R.J. Hill, G. Lee, G. Paz and M.P. Solon, NRQED Lagrangian at order 1_/M_ 4, Phys. Rev.D 87 (2013) 053017 [arXiv:1212.4508] [INSPIRE].
G. Sanchez-Colon and J. Wudka, Effective operator contributions to the oblique parameters, Phys. Lett.B 432 (1998) 383 [hep-ph/9805366] [INSPIRE].
W. Kilian and J. Reuter, The Low-energy structure of little Higgs models, Phys. Rev.D 70 (2004) 015004 [hep-ph/0311095] [INSPIRE].
C. Grojean, W. Skiba and J. Terning, Disguising the oblique parameters, Phys. Rev.D 73 (2006) 075008 [hep-ph/0602154] [INSPIRE].
L. Berthier, M. Bjørn and M. Trott, Incorporating doubly resonant W ± data in a global fit of SMEFT parameters to lift flat directions, JHEP09 (2016) 157 [arXiv:1606.06693] [INSPIRE]. ArticleADS Google Scholar
LHC Higgs Cross section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs Cross sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [INSPIRE].
G. Passarino and M. Trott, The Standard Model Effective Field Theory and Next to Leading Order, arXiv:1610.08356 [INSPIRE].
R.E. Kallosh and I.V. Tyutin, The equivalence theorem and gauge invariance in renormalizable theories, Yad. Fiz.17 (1973) 190 [INSPIRE]. MathSciNet Google Scholar
G. ’t Hooft and M.J.G. Veltman, Combinatorics of gauge fields, Nucl. Phys.B 50 (1972) 318 [INSPIRE].
D.C. Kennedy and B.W. Lynn, Electroweak Radiative Corrections with an Effective Lagrangian: Four Fermion Processes, Nucl. Phys.B 322 (1989) 1 [INSPIRE]. ArticleADS Google Scholar
G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett.B 253 (1991) 161 [INSPIRE]. ArticleADS Google Scholar
G. Altarelli, R. Barbieri and S. Jadach, Toward a model independent analysis of electroweak data, Nucl. Phys.B 369 (1992) 3 [Erratum ibid.B 376 (1992) 444] [INSPIRE].
M. Golden and L. Randall, Radiative Corrections to Electroweak Parameters in Technicolor Theories, Nucl. Phys.B 361 (1991) 3 [INSPIRE]. ArticleADS Google Scholar
B. Holdom and J. Terning, Large corrections to electroweak parameters in technicolor theories, Phys. Lett.B 247 (1990) 88 [INSPIRE]. ArticleADS Google Scholar
M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys. Rev. Lett.65 (1990) 964 [INSPIRE]. ArticleADS Google Scholar
M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev.D 46 (1992) 381 [INSPIRE]. ADS Google Scholar
B. Grinstein and M.B. Wise, Operator analysis for precision electroweak physics, Phys. Lett.B 265 (1991) 326 [INSPIRE]. ArticleADS Google Scholar
Z. Han and W. Skiba, Effective theory analysis of precision electroweak data, Phys. Rev.D 71 (2005) 075009 [hep-ph/0412166] [INSPIRE].
A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys.B 234 (1984) 189 [INSPIRE]. ArticleADS Google Scholar
A.G. Cohen, D.B. Kaplan and A.E. Nelson, Counting 4 pis in strongly coupled supersymmetry, Phys. Lett.B 412 (1997) 301 [hep-ph/9706275] [INSPIRE].
M.A. Luty, Naive dimensional analysis and supersymmetry, Phys. Rev.D 57 (1998) 1531 [hep-ph/9706235] [INSPIRE].
B.M. Gavela, E.E. Jenkins, A.V. Manohar and L. Merlo, Analysis of General Power Counting Rules in Effective Field Theory, Eur. Phys. J.C 76 (2016) 485 [arXiv:1601.07551] [INSPIRE]. ArticleADS Google Scholar
C. Arzt, M.B. Einhorn and J. Wudka, Patterns of deviation from the standard model, Nucl. Phys.B 433 (1995) 41 [hep-ph/9405214] [INSPIRE].
R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys.B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].
M. González-Alonso and J. Martin Camalich, Global Effective-Field-Theory analysis of New-Physics effects in (semi)leptonic kaon decays, JHEP12 (2016) 052 [arXiv:1605.07114] [INSPIRE]. ArticleADS Google Scholar
V. Cirigliano, W. Dekens, J. de Vries and E. Mereghetti, Constraining the top-Higgs sector of the Standard Model Effective Field Theory, Phys. Rev.D 94 (2016) 034031 [arXiv:1605.04311] [INSPIRE].
ALEPH, DELPHI, L3, OPAL, SLD collaborations, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept.427 (2006) 257 [hep-ex/0509008] [INSPIRE].
Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys.C 38 (2014) 090001 [INSPIRE].
P.J. Mohr, B.N. Taylor and D.B. Newell, CODATA Recommended Values of the Fundamental Physical Constants: 2010, Rev. Mod. Phys.84 (2012) 1527 [arXiv:1203.5425] [INSPIRE]. ArticleADS Google Scholar
ATLAS, CMS collaborations, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett.114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the Weak Boson Sector in e+_e_− → W +W −, Nucl. Phys.B 282 (1987) 253 [INSPIRE]. ArticleADS Google Scholar
A. Sirlin, Radiative Corrections in the SU(2) L × U(1) Theory: A Simple Renormalization Framework, Phys. Rev.D 22 (1980) 971 [INSPIRE]. ADS Google Scholar
A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys.41 (1993) 307 [arXiv:0709.1075] [INSPIRE]. ADS Google Scholar
R. Gauld, B.D. Pecjak and D.J. Scott, One-loop corrections to \( h\to b\overline{b} \) and \( h\to \tau \overline{\tau} \) decays in the Standard Model Dimension-6 EFT: four-fermion operators and the large-mtlimit, JHEP05 (2016) 080 [arXiv:1512.02508] [INSPIRE].
R. Gauld, B.D. Pecjak and D.J. Scott, QCD radiative corrections for \( h\to b\overline{b} \) in the Standard Model Dimension-6 EFT, Phys. Rev.D 94 (2016) 074045 [arXiv:1607.06354] [INSPIRE].
R.G. Stuart, Gauge invariance, analyticity and physical observables at the Z0 resonance, Phys. Lett.B 262 (1991) 113 [INSPIRE]. ArticleADS Google Scholar
M.W. Grunewald et al., Reports of the Working Groups on Precision Calculations for LEP2 Physics: Proceedings. Four fermion production in electron positron collisions, hep-ph/0005309 [INSPIRE].
J. de Blas et al., Global Bayesian Analysis of the Higgs-boson Couplings, Nucl. Part. Phys. Proc.273-275 (2016) 834 [arXiv:1410.4204] [INSPIRE].
J. de Blas et al., Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future, JHEP12 (2016) 135 [arXiv:1608.01509] [INSPIRE]. ArticleADS Google Scholar
A. Butter, O.J.P. Éboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn and M. Rauch, The Gauge-Higgs Legacy of the LHC Run I, JHEP07 (2016) 152 [arXiv:1604.03105] [INSPIRE]. ArticleADS Google Scholar
M. Awramik, M. Czakon, A. Freitas and G. Weiglein, Precise prediction for the W boson mass in the standard model, Phys. Rev.D 69 (2004) 053006 [hep-ph/0311148] [INSPIRE].