S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys. Rev.D 13 (1976) 974 [INSPIRE]. ADS Google Scholar
CMS collaboration, Evidence for a particle decaying to W + W − in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003 (2013).
CMS collaboration, Evidence for the 125 GeV Higgs boson decaying to a pair of τ leptons, CMS-HIG-13-004 (2014).
CMS collaboration, Search for a Higgs boson decaying into a Z and a photon in pp collisions at \( \sqrt{s} \) =7 and 8 TeV, CMS-HIG-13-006 (2013).
CMS collaboration, Search for SM Higgs in WH to WWW to 3l 3nu, CMS-HIG-13-009 (2013).
ATLAS collaboration, Search for the Standard Model Higgs boson in the H → Zγ decay mode with pp collisions at \( \sqrt{s} \) =7 and 8 TeV, ATLAS-CONF-2013-009 (2013).
ATLAS collaboration, Search for a Standard Model Higgs boson in H → μμ decays with the ATLAS detector, ATLAS-CONF-2013-010 (2013).
ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).
ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).
T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys.B 479 (1996) 46 [Erratum ibid.B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
U. Baur, T. Plehn and D.L. Rainwater, Measuring the Higgs boson self coupling at the LHC and finite top mass matrix elements, Phys. Rev. Lett.89 (2002) 151801 [hep-ph/0206024] [INSPIRE]. ArticleADS Google Scholar
U. Baur, T. Plehn and D.L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: A Comparative analysis, Phys. Rev.D 68 (2003) 033001 [hep-ph/0304015] [INSPIRE]. ADS Google Scholar
U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev.D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE]. ADS Google Scholar
T. Binoth, S. Karg, N. Kauer and R. Ruckl, Multi-Higgs boson production in the Standard Model and beyond, Phys. Rev.D 74 (2006) 113008 [hep-ph/0608057] [INSPIRE]. ADS Google Scholar
J. Baglio, O. Eberhardt, U. Nierste and M. Wiebusch, Benchmarks for Higgs Pair Production and Heavy Higgs Searches in the Two-Higgs-Doublet Model of Type II, Phys. Rev.D 90 (2014) 015008 [arXiv:1403.1264] [INSPIRE]. ADS Google Scholar
E. Asakawa, D. Harada, S. Kanemura, Y. Okada and K. Tsumura, Higgs boson pair production in new physics models at hadron, lepton and photon colliders, Phys. Rev.D 82 (2010) 115002 [arXiv:1009.4670] [INSPIRE]. ADS Google Scholar
A. Arhrib, R. Benbrik, C.-H. Chen, R. Guedes and R. Santos, Double Neutral Higgs production in the Two-Higgs doublet model at the LHC, JHEP08 (2009) 035 [arXiv:0906.0387] [INSPIRE]. ArticleADS Google Scholar
J. Cao, Z. Heng, L. Shang, P. Wan and J.M. Yang, Pair Production of a 125 GeV Higgs Boson in MSSM and NMSSM at the LHC, JHEP04 (2013) 134 [arXiv:1301.6437] [INSPIRE]. ArticleADS Google Scholar
D.T. Nhung, M. Muhlleitner, J. Streicher and K. Walz, Higher Order Corrections to the Trilinear Higgs Self-Couplings in the Real NMSSM, JHEP11 (2013) 181 [arXiv:1306.3926] [INSPIRE]. ArticleADS Google Scholar
S. Dawson, E. Furlan and I. Lewis, Unravelling an extended quark sector through multiple Higgs production?, Phys. Rev.D 87 (2013) 014007 [arXiv:1210.6663] [INSPIRE]. ADS Google Scholar
G.D. Kribs and A. Martin, Enhanced di-Higgs Production through Light Colored Scalars, Phys. Rev.D 86 (2012) 095023 [arXiv:1207.4496] [INSPIRE]. ADS Google Scholar
C.O. Dib, R. Rosenfeld and A. Zerwekh, Double Higgs production and quadratic divergence cancellation in little Higgs models with T parity, JHEP05 (2006) 074 [hep-ph/0509179] [INSPIRE]. ArticleADS Google Scholar
L. Wang, W. Wang, J.M. Yang and H. Zhang, Higgs-pair production in littlest Higgs model with T-parity, Phys. Rev.D 76 (2007) 017702 [arXiv:0705.3392] [INSPIRE]. ADS Google Scholar
M.J. Dolan, C. Englert and M. Spannowsky, New Physics in LHC Higgs boson pair production, Phys. Rev.D 87 (2013) 055002 [arXiv:1210.8166] [INSPIRE]. ADS Google Scholar
J.M. No and M. Ramsey-Musolf, Probing the Higgs Portal at the LHC Through Resonant di-Higgs Production, Phys. Rev.D 89 (2014) 095031 [arXiv:1310.6035] [INSPIRE]. ADS Google Scholar
E.L. Berger, S.B. Giddings, H. Wang and H. Zhang, Higgs-flavon mixing and LHC phenomenology in a simplified model of broken flavor symmetry, Phys. Rev.D 90 (2014) 076004 [arXiv:1406.6054] [INSPIRE]. ADS Google Scholar
M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner and E. Salvioni, Higgs Low-Energy Theorem (and its corrections) in Composite Models, JHEP10 (2012) 004 [arXiv:1206.7120] [INSPIRE]. ArticleADS Google Scholar
J. Liu, X.-P. Wang and S.-h. Zhu, Discovering extra Higgs boson via pair production of the SM-like Higgs bosons, arXiv:1310.3634 [INSPIRE].
A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the \( b\overline{b}{W}^{+}{W}^{-} \) channel, Phys. Rev.D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE]. ADS Google Scholar
A.J. Barr, M.J. Dolan, C. Englert and M. Spannowsky, Di-Higgs final states augMT2ed - selecting hh events at the high luminosity LHC, Phys. Lett.B 728 (2014) 308 [arXiv:1309.6318] [INSPIRE]. ArticleADS Google Scholar
M. Gouzevitch et al., Scale-invariant resonance tagging in multijet events and new physics in Higgs pair production, JHEP07 (2013) 148 [arXiv:1303.6636] [INSPIRE]. ArticleADS Google Scholar
Q. Li, Q.-S. Yan and X. Zhao, Higgs Pair Production: Improved Description by Matrix Element Matching, Phys. Rev.D 89 (2014) 033015 [arXiv:1312.3830] [INSPIRE]. ADS Google Scholar
F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs Boson self-coupling measurements using ratios of cross sections, JHEP06 (2013) 016 [arXiv:1301.3492] [INSPIRE]. ArticleADS Google Scholar
D.E. Ferreira de Lima, A. Papaefstathiou and M. Spannowsky, Standard model Higgs boson pair production in the \( \left(b\overline{b}\right)\left(b\overline{b}\right) \) final state, JHEP08 (2014) 030 [arXiv:1404.7139] [INSPIRE]. Article Google Scholar
V. Barger, L.L. Everett, C.B. Jackson and G. Shaughnessy, Higgs-Pair Production and Measurement of the Triscalar Coupling at LHC(8,14), Phys. Lett.B 728 (2014) 433 [arXiv:1311.2931] [INSPIRE]. ArticleADS Google Scholar
M. Slawinska, W. van den Wollenberg, B. van Eijk and S. Bentvelsen, Phenomenology of the trilinear Higgs coupling at proton-proton colliders, arXiv:1408.5010 [INSPIRE].
R. Contino, C. Grojean, D. Pappadopulo, R. Rattazzi and A. Thamm, Strong Higgs Interactions at a Linear Collider, JHEP02 (2014) 006 [arXiv:1309.7038] [INSPIRE]. Article Google Scholar
L. Liu-Sheng et al., NNLO QCD corrections to Higgs pair production via vector boson fusion at hadron colliders, Phys. Rev.D 89 (2014) 073001 [arXiv:1401.7754] [INSPIRE]. ADS Google Scholar
S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev.D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].
D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Order in QCD, Phys. Rev. Lett.111 (2013) 201801 [arXiv:1309.6594] [INSPIRE]. ArticleADS Google Scholar
G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: A Program implementing the OPP reduction method to compute one-loop amplitudes, JHEP03 (2008) 042 [arXiv:0711.3596] [INSPIRE]. ArticleADS Google Scholar
D. Graudenz, M. Spira and P.M. Zerwas, QCD corrections to Higgs boson production at proton proton colliders, Phys. Rev. Lett.70 (1993) 1372 [INSPIRE]. ArticleADS Google Scholar
C. Anastasiou, S. Buehler, F. Herzog and A. Lazopoulos, Total cross-section for Higgs boson hadroproduction with anomalous Standard Model interactions, JHEP12 (2011) 058 [arXiv:1107.0683] [INSPIRE]. ArticleADS Google Scholar
R.V. Harlander, S. Liebler and H. Mantler, SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM, Computer Physics Communications184 (2013) 1605 [arXiv:1212.3249] [INSPIRE]. ArticleADSMATH Google Scholar
R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP11 (2009) 088 [arXiv:0909.3420] [INSPIRE]. ArticleADS Google Scholar
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP07 (2014) 079 [arXiv:1405.0301] [INSPIRE]. ArticleADS Google Scholar
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun.185 (2014) 2250 [arXiv:1310.1921] [INSPIRE]. ArticleADS Google Scholar
F. Maltoni, K. Mawatari and M. Zaro, Higgs characterisation via vector-boson fusion and associated production: NLO and parton-shower effects, Eur. Phys. J.74 (2014) 2710 [arXiv:1311.1829] [INSPIRE]. ArticleADS Google Scholar
F. Demartin, F. Maltoni, K. Mawatari, B. Page and M. Zaro, Higgs characterisation at NLO in QCD: CP properties of the top-quark Yukawa interaction, Eur. Phys. J.C 74 (2014) 3065 [arXiv:1407.5089] [INSPIRE]. ArticleADS Google Scholar
P. de Aquino, W. Link, F. Maltoni, O. Mattelaer and T. Stelzer, ALOHA: Automatic Libraries Of Helicity Amplitudes for Feynman Diagram Computations, Comput. Phys. Commun.183 (2012) 2254 [arXiv:1108.2041] [INSPIRE]. ArticleADS Google Scholar
S. Catani and M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys.B 485 (1997) 291 [Erratum ibid.B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: The FKS subtraction, JHEP10 (2009) 003 [arXiv:0908.4272] [INSPIRE]. ArticleADS Google Scholar
J. Alwall, Q. Li and F. Maltoni, Matched predictions for Higgs production via heavy-quark loops in the SM and beyond, Phys. Rev.D 85 (2012) 014031 [arXiv:1110.1728] [INSPIRE]. ADS Google Scholar
R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP02 (2012) 099 [arXiv:1110.4738] [INSPIRE]. ArticleADS Google Scholar
S. Alioli et al., Update of the Binoth Les Houches Accord for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun.185 (2014) 560 [arXiv:1308.3462] [INSPIRE]. ArticleADS Google Scholar
A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e + e − → 4 fermions + γ, Nucl. Phys.B 560 (1999) 33 [hep-ph/9904472] [INSPIRE]. ArticleADS Google Scholar
A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e − → 4 fermion processes: Technical details and further results, Nucl. Phys.B 724 (2005) 247 [Erratum ibid.B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
S. Frixione, F. Stoeckli, P. Torrielli, B.R. Webber and C.D. White, The MCaNLO 4.0 Event Generator, arXiv:1010.0819 [INSPIRE].
C. Anastasiou, S. Bucherer and Z. Kunszt, HPro: A NLO Monte-Carlo for Higgs production via gluon fusion with finite heavy quark masses, JHEP10 (2009) 068 [arXiv:0907.2362] [INSPIRE]. ArticleADS Google Scholar
R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett.88 (2002) 201801 [hep-ph/0201206] [INSPIRE]. ArticleADS Google Scholar
R.V. Harlander, T. Neumann, K.J. Ozeren and M. Wiesemann, Top-mass effects in differential Higgs production through gluon fusion at order α 4 s , JHEP08 (2012) 139 [arXiv:1206.0157] [INSPIRE]. ArticleADS Google Scholar
R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J.C 66 (2010) 359 [arXiv:0912.2104] [INSPIRE]. ArticleADS Google Scholar
T. Neumann and M. Wiesemann, Finite top-mass effects in gluon-induced Higgs production with a jet-veto at NNLO, arXiv:1408.6836 [INSPIRE].