Bergen WG, Wu G (2009) Intestinal nitrogen recycling and utilization in health and disease. J Nutr 139:821–825 ArticleCASPubMed Google Scholar
Blachier F, Mariotti F, Huneau JF, Tomé D (2007) Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences. Amino Acids 33:547–562 ArticleCASPubMed Google Scholar
Blachier F, Lancha AH Jr, Boutry C, Tomé D (2010) Alimentary proteins, amino acids and cholesterolemia. Amino Acids 38:15–22 ArticleCASPubMed Google Scholar
Booijink CCGM (2009) Analysis of diversity and function of the human small intestinal microbiota. Thesis, Wageningen University Press, The Netherlands
Booijink CCGM, Zoetendal EG, Kleerebezem M, de Vos WM (2007) Microbial community in the human small intestine: coupling diversity to metagenomics. Future Microbiol 2:285–295 ArticleCASPubMed Google Scholar
Burrin DG, Reeds PJ (1997) Alternative fuels in the gastrointestinal tract. Curr Opin Gastroenterol 13:165–170 Article Google Scholar
Chassard C, Scott KP, Marquet P, Martin JC, Del’homme C, Dapoigny M, Flint HJ, Bernalier-Donadille A (2008) Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches. FEMS Microbiol Ecol 66:496–504 ArticleCASPubMed Google Scholar
Chen LX, Yin YL, Jobgen WS, Jobgen SC, Knabe DA, Hu W, Wu G (2007) In vitro oxidation of essential amino acids by jejunal mucosal cells of growing pigs. Livest Sci 109:19–23 Article Google Scholar
Chen LX, Li P, Wang JJ, Li XL, Gao HJ, Yin YL, Hou YQ, Wu G (2009) Catabolism of nutritionally essential amino acids in developing porcine enterocytes. Amino Acids 37:143–152 ArticleCASPubMed Google Scholar
Duncan S, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70:5810–5817 ArticleCASPubMed Google Scholar
Dy M, Schneider E (2004) Histamine–cytokine connection in immunity and hematopoiesis. Cytokine Growth Factor Rev 15:393–410 ArticleCASPubMed Google Scholar
Eklou-Lawson M, Bernard F, Neveux N, Chaumontet C, Bos C, Davila-Gay AM, Tome D, Cynober L, Blachier F (2009) Colonic luminal ammonia and portal blood l-glutamine and l-arginine concentrations: a possible link between colon mucosa and liver ureagenesis. Amino Acids 37:751–760 ArticleCASPubMed Google Scholar
Elango R, Ball RO, Pencharz PB (2009) Amino acid requirements in humans: with a special emphasis on the metabolic availability of amino acids. Amino Acids 37:19–27 ArticleCASPubMed Google Scholar
Favier CF, Vaughan EE, De Vos WM, Akkermans AD (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68:219–226 ArticleCASPubMed Google Scholar
Flint HJ, Duncan S, Scott KP, Louis P (2007) Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101–1111 ArticleCASPubMed Google Scholar
Haynes TE, Li P, Li XL, Shimotori K, Sato H, Flynn NE, Wang JJ, Knabe DA, Wu G (2009) l-Glutamine or l-alanyl- l-glutamine prevents oxidant- or endotoxin- induced death of neonatal enterocytes. Amino Acids 37:131–142 ArticleCASPubMed Google Scholar
He QH, Kong XF, Wu G, Ren PP, Tang HR, Hao FH, Huang RL, Li TJ, Tan BE, Li P, Tang ZR, Yin YL, Wu YN (2009) Metabolomic analysis of the response of growing pigs to dietary l-arginine supplementation. Amino Acids 37:199–208 ArticleCASPubMed Google Scholar
Kong XF, Yin YL, He QH, Yin FG, Liu HJ, Li TJ, Huang RL, Geng MM, Ruan Z, Deng ZY, Xie MY, Wu G (2009) Dietary supplementation with Chinese herbal powder enhances ileal digestibilities and serum concentrations of amino acids in young pigs. Amino Acids 37:573–582 ArticleCASPubMed Google Scholar
Konstantinov SR, Zhu WY, Williams BA, Tamminga S, de Vos WM, Akkermans ADL (2003) Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA. FEMS Microbiol Ecol 43:225–235 ArticleCASPubMed Google Scholar
Konstantinov SR, Awati AA, Williams BA, Miller BG, Jones P, Stokes CR, Akkermans ADL, Smidt H, de Vos WM (2006) Post-natal development of the porcine microbiota composition and activities. Environ Microbiol 8:1191–1199 ArticleCASPubMed Google Scholar
Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Møller K (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 68:673–690 ArticleCASPubMed Google Scholar
Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848 ArticleCASPubMed Google Scholar
Li P, Yin YL, Li D, Kim SW, Wu G (2007) Amino acids and immune function. Br J Nutr 2007(98):237–252 Article Google Scholar
Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, Zhang Y, Shen J, Pang X, Zhang M, Wei H, Chen Y, Lu H, Zuo J, Su M, Qiu Y, Jia W, Xiao C, Smith LM, Yang S, Holmes E, Tang H, Zhao G, Nicholson JK, Li L, Zhao L (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 105:2117–2122 ArticleCASPubMed Google Scholar
Li P, Kim SW, Li XL, Datta S, Pond WG, Wu G (2009a) Dietary supplementation with cholesterol and docosahexaenoic acid affects concentrations of amino acids in tissues of young pigs. Amino Acids 37:709–716 ArticlePubMed Google Scholar
Li XL, Bazer FW, Gao H, Jobgen W, Johnson GA, Li P, McKnight JR, Satterfield MC, Spencer TE, Wu G (2009b) Amino acids and gaseous signaling. Amino Acids 37:65–78 ArticlePubMed Google Scholar
Lin JR, Armstead IP (1995) The in vitro uptake and metabolism of peptides and amino acids by five species of rumen bacteria. J Appl Bacteriol 78:116–124 Google Scholar
MacRae JC, Bruce LA, Brown DS, Calder AG (1997) Amino acid use by the gastrointestinal tract of sheep given lucerne forage. Am J Physiol Gastrointest Liver Physiol 273:1200–1207 Google Scholar
Martin F-PJ, Wang Y, Sprenger N, Yap IKS, Lundstedt T, Lek P, Rezzi S, Ramadan Z, Bladeren PV, Fay LB, Kochhar S, Lindon JC, Holmes E, Nicholson JK (2008) Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model. Mol Syst Biol 4:157 PubMed Google Scholar
Martin F-PJ, Sprenger N, Yap IKS, Wang Y, Bibiloni R, Rochat F, Rezzi S, Cherbut C, Kochhar S, Lindon JC, Holmes E, Nicholson JK (2009) Panorganismal gut microbiome-host metabolic crosstalk. J Proteome Res 8:2090–2105 ArticleCASPubMed Google Scholar
Metges CC (2000) Contribution of microbial amino acids to amino acid homeostasis of the host. J Nutr 130:1857S–1864S CASPubMed Google Scholar
Metges CC, El-Khoury AE, Henneman L, Petzke KJ, Grant I, Bedri S, Pereira PP, Ajami AM, Fuller MF, Young VR (1999) Availability of intestinal microbial lysine for whole body lysine homeostasis in human subjects. Am J Physiol 277:E597–E607 CASPubMed Google Scholar
Mikkelsen LL, Højberg O, Jensen BB (2007) Coarse structured feed stimulates members of the genera Lactobacillus and Mitsuokella as well as propionate and butyrate producers in the pig stomach. Livest Sci 109:153–156 Article Google Scholar
Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) Sequence heterogeneities of genes encoding 16S rRNA in Paenibacillus polymixa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643 PubMed Google Scholar
Rhoads JM, Wu G (2009) Glutamine, arginine, and leucine signaling in the intestine. Amino Acids 37:111–122 ArticleCAS Google Scholar
Rogosa M (1969) Acidaminococcus gen. n., Acidaminococcus fermentans sp. n., anaerobic gram-negative diplococci using amino acids as the sole energy source for growth. J Bacteriol 98:756–766 CASPubMed Google Scholar
Ros M, Goberna M, Pascual PA, Klammer S, Insam H (2008) 16S rDNA analysis reveals low microbial diversity in community level physiological profile assays. J Microbiol Methods 72:221–226 ArticleCASPubMed Google Scholar
Russell JB, Rychlik JL (2001) Factors that alter rumen microbial ecology. Science 292:1119–1122 ArticleCASPubMed Google Scholar
Rychlik JL, LaVera R, Russell JB (2002) Amino acid deamination by ruminal Megasphaera elsdenii strains. Curr Microbiol 45:340–345 ArticleCASPubMed Google Scholar
Sanguinetti CJ, Dias Neto E, Simpson AJG (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. BioTechniques 17:915–919 Google Scholar
Schaible UE, Kaufmann SHE (2005) A nutritive view on the host–pathogen interplay. Trends Microbiol 13:373–380 ArticleCASPubMed Google Scholar
Scheifinger C, Russell N, Chalupa W (1976) Degradation of amino acids by pure cultures of rumen bacteria. J Anim Sci 43:821–827 CASPubMed Google Scholar
Smith EA, Macfarlane GT (1996) Studies on amine production in the human colon: enumeration of amine-forming bacteria and physiological effects of carbohydrate and pH. Anaerobe 2:285–297 ArticleCAS Google Scholar
Smith EA, Macfarlane GT (1997) Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe 3:327–337 ArticleCASPubMed Google Scholar
Smith EA, Macfarlane GT (1998) Enumeration of amino acid fermenting bacteria in the human large intestine: effects of pH and starch on peptide metabolism and dissimilation of amino acids. FEMS Microbiol Ecol 25:355–368 ArticleCAS Google Scholar
Stoll B, Burrin DG (2006) Measuring splanchnic amino acid metabolism in vivo using stable isotopic tracers. J Anim Sci 84:E60–E72 PubMed Google Scholar
Stoll B, Henry J, Reeds PJ, Yu H, Jahoor F, Burrin DG (1998) Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J Nutr 128:606–614 CASPubMed Google Scholar
Tan B, Yin Y, Liu Z, Li X, Xu H, Kong X, Huang R, Tang W, Shinzato I, Smith SB, Wu G (2009a) Dietary l-arginine supplementation increases muscle gain and reduces body fat mass in growing-finishing pigs. Amino Acids 37:169–175 ArticleCASPubMed Google Scholar
Tan B, Li XG, Kong XF, Huang RL, Ruan Z, Yao K, Deng ZY, Xie MY, Shinzato I, Yin YL, Wu G (2009b) Dietary l-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids 37:323–331 ArticleCASPubMed Google Scholar
Tan BE, Yin YL, Kong XF, Li P, Li XL, Gao HJ, Li XG, Huang RL, Wu G (2009c) l-Arginine stimulates proliferation and prevents endotoxin-induced death of intestinal cells. Amino Acids. doi:10.1007/s00726-009-0334-8
Torrallardona D, Harris CI, Fuller MF (2003a) Pigs’ gastrointestinal microflora provide them with essential amino acids. J Nutr 133:1127–1131 CASPubMed Google Scholar
Torrallardona D, Harris CI, Fuller MF (2003b) Lysine synthesized by the gastrointestinal microflora of pigs is absorbed, mostly in the small intestine. Am J Physiol Endocrinol Metab 284:E1177–E1180 CASPubMed Google Scholar
Tsukahara T, Koyama H, Okada M, Ushida K (2002) Stimulation of butyrate production by gluconic acid in batch culture of pig cecal digesta and identification of butyrate-producing bacteria. J Nutr 132:2229–2234 CASPubMed Google Scholar
van der Schoor SRD, Reeds PJ, Stoll B, Henry JF, Rosenberg JR, Burrin DG, van Goudoever JB (2002) The high metabolic cost of a functional gut. Gastroenterology 123:1931–1940 Article Google Scholar
van Goudoever JB, Stoll B, Henry JF, Burrin DG, Reeds PJ (2000) Adaptive regulation of intestinal lysine metabolism. Proc Natl Acad Sci USA 97:11620–11625 ArticlePubMed Google Scholar
Wallace RJ (1986) Catabolism of amino acids by Megasphaera elsdenii LC1. Appl Environ Microbiol 51:1141–1143 CASPubMed Google Scholar
Wallace RJ (1996) Ruminal microbial metabolism of peptides and amino acids. J Nutr 126:1326S–1334S CASPubMed Google Scholar
Wang X, Ou D, Yin J, Wu G, Wang J (2009b) Proteomic analysis reveals altered expression of proteins related to glutathione metabolism and apoptosis in the small intestine of zinc oxide-supplemented piglets. Amino Acids 37:209–218 ArticlePubMed Google Scholar
Westlake K, Mackie RI (1990) Peptide and amino acid transport in Streptococcus bovis. Appl Microbiol Biotechnol 34:97–102 ArticleCASPubMed Google Scholar
Whitt DD, DeMoss RD (1975) Effect of microflora on the free amino acid distribution in various regions of the mouse gastrointestinal tract. Appl Microbiol 30:609–615 CASPubMed Google Scholar
Williams BA, Verstegen MWA, Tamminga S (2001) Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr Res Rev 14:207–227 ArticleCASPubMed Google Scholar
Williams BA, Bosch MW, Boer H, Verstegen MWA, Tamminga S (2005) An in vitro batch culture method to assess potential fermentability of feed ingredients for monogastric diets. Anim Feed Sci Technol 123–124:445–462 Article Google Scholar
Wu G (1998) Intestinal mucosal amino acid catabolism. J Nutr 128:1249–1252 CASPubMed Google Scholar
Wu G, Borbolla AG, Knabe DA (1994) The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. J Nutr 124:2437–2444 CASPubMed Google Scholar
Wu G, Ott TL, Knabe DA, Bazer FW (1999) Amino acid composition of the fetal pig. J Nutr 129:1031–1038 CASPubMed Google Scholar
Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin YL (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168 ArticleCASPubMed Google Scholar
Yin FG, Liu YL, Yin YL, Kong XF, Huang RL, Li TJ, Wu GY, Hou YQ (2009) Dietary supplementation with Astragalus polysaccharide enhances ileal digestibilities and serum concentrations of amino acids in early weaned piglets. Amino Acids 37:263–270 ArticleCASPubMed Google Scholar
Zhang J (2009) Isolation and identification of amino acid utilizing bacteria from the porcine small intestine. Thesis, Nanjing Agricultural University, Nanjing, China
Zoetendal EG, Heilig HGHJ, Klaassens ES, Booijink CCGM, Kleerebezem M, Smidt H, de Vos WM (2006) Isolation of DNA from bacterial samples of the human gastrointestinal tract. Nat Protoc 1:870–873 ArticleCASPubMed Google Scholar