A new role for T cells in dampening innate inflammatory responses (original) (raw)

References

  1. Medzhitov R. Origin and physiological roles of inflammation. Nature, 2008, 454: 428–435 10.1038/nature07201, 1:CAS:528:DC%2BD1cXovV2mtbw%3D, 18650913
    Article PubMed CAS Google Scholar
  2. Medzhitov R. Approaching the asymptote: 20 years later. Immunity, 2009, 30: 766–775 10.1016/j.immuni.2009.06.004, 1:CAS:528:DC%2BD1MXpsFCntbk%3D, 19538928
    Article PubMed CAS Google Scholar
  3. Zhao J, Yang X, Auh S L, et al. Do adaptive immune cells suppress or activate innate immunity? Trends Immunol, 2009, 30: 8–12 10.1016/j.it.2008.10.003, 19058755
    Article PubMed Google Scholar
  4. Cavaillon J M, Annane D. Compartmentalization of the inflammatory response in sepsis and SIRS. J Endotoxin Res, 2006, 12: 151–170 10.1179/096805106X102246, 1:CAS:528:DC%2BD28XmtV2hs7g%3D, 16719987
    Article PubMed CAS Google Scholar
  5. Brooks D G, Trifilo M J, Edelmann K H, et al. Interleukin-10 determines viral clearance or persistence in vivo. Nat Med, 2006, 12: 1301–1309 10.1038/nm1492, 1:CAS:528:DC%2BD28XhtFKlsLfO, 17041596
    Article PubMed CAS PubMed Central Google Scholar
  6. Sharpe A H, Wherry E J, Ahmed R, et al. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol, 2007, 8: 239–245 10.1038/ni1443, 1:CAS:528:DC%2BD2sXhslWms78%3D, 17304234
    Article PubMed CAS Google Scholar
  7. Akira S, Takeda K, Kaisho T. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat Immunol, 2001, 2: 675–680 10.1038/90609, 1:CAS:528:DC%2BD3MXlslGjtLs%3D, 11477402
    Article PubMed CAS Google Scholar
  8. Janeway C A J, Medzhitov R. Innate immune recognition. Annu Rev Immunol, 2002, 20: 197–216 10.1146/annurev.immunol.20.083001.084359, 1:CAS:528:DC%2BD38XjtlWgt7Y%3D, 11861602
    Article PubMed CAS Google Scholar
  9. Takeuchi O, Akira S. Innate immunity to virus infection. Immunol Rev, 2009, 227: 75–86 10.1111/j.1600-065X.2008.00737.x, 1:CAS:528:DC%2BD1MXhsFGls7zI, 19120477
    Article PubMed CAS Google Scholar
  10. Takaoka A, Wang Z, Choi M K, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature, 2007, 448: 501–505 10.1038/nature06013, 1:CAS:528:DC%2BD2sXotFajurk%3D, 17618271
    Article PubMed CAS Google Scholar
  11. Schroder K, Muruve D A, Tschopp J. Innate immunity: Cytoplasmic DNA sensing by the AIM2 inflammasome. Curr Biol, 2009, 19: R262–265 10.1016/j.cub.2009.02.011, 1:CAS:528:DC%2BD1MXjsFWru7Y%3D, 19321146
    Article PubMed CAS Google Scholar
  12. Sabbah A, Chang T H, Harnack R, et al. Activation of innate immune antiviral responses by Nod2. Nat Immunol, 2009, 10: 1073–1080 10.1038/ni.1782, 1:CAS:528:DC%2BD1MXhtVaksrrP, 19701189
    Article PubMed CAS PubMed Central Google Scholar
  13. O’Neill L A. DNA makes RNA makes innate immunity. Cell, 2009, 138: 428–430 10.1016/j.cell.2009.07.021, 19665965
    Article PubMed Google Scholar
  14. Medzhitov R, Janeway C A J. Innate immunity: The virtues of a nonclonal system of recognition. Cell, 1997, 91: 295–298 10.1016/S0092-8674(00)80412-2, 1:CAS:528:DyaK2sXnt1Clsrw%3D, 9363937
    Article PubMed CAS Google Scholar
  15. Stout R D, Bottomly K. Antigen-specific activation of effector macrophages by IFN-gamma producing (TH1) T cell clones. Failure of IL-4-producing (TH2) T cell clones to activate effector function in macrophages. J Immunol, 1989, 142: 760–765 1:CAS:528:DyaL1MXhtFartbY%3D, 2464024
    PubMed CAS Google Scholar
  16. Monney L, Sabatos C A, Gaglia J L, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature, 2002, 415: 536–541 10.1038/415536a, 1:CAS:528:DC%2BD38Xht1GhtLs%3D, 11823861
    Article PubMed CAS Google Scholar
  17. Duffield J S. The inflammatory macrophage: A story of Jekyll and Hyde. Clin Sci (Lond) 2003, 104: 27–38 10.1042/CS20020240, 1:CAS:528:DC%2BD3sXitVOqtQ%3D%3D
    Article CAS Google Scholar
  18. Foster P S, Hogan S P, Ramsay A J, et al. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med, 1996, 183: 195–201 10.1084/jem.183.1.195, 1:CAS:528:DyaK28XjsVCgtQ%3D%3D, 8551223
    Article PubMed CAS Google Scholar
  19. Iwamoto I, Nakajima H, Endo H, et al. Interferon gamma regulates antigen-induced eosinophil recruitment into the mouse airways by inhibiting the infiltration of CD4+ T cells. J Exp Med, 1993, 177: 573–576 10.1084/jem.177.2.573, 1:CAS:528:DyaK3sXnvFamsw%3D%3D, 8093895
    Article PubMed CAS Google Scholar
  20. Ohnishi T, Kita H, Weiler D, et al. IL-5 is the predominant eosinophil-active cytokine in the antigen-induced pulmonary late-phase reaction. Am Rev Respir Dis, 1993, 147: 901–907 1:CAS:528:DyaK3sXisFeitLc%3D, 8466126
    Article PubMed CAS Google Scholar
  21. Beaven M A, Metzger H. Signal transduction by Fc receptors: The Fc epsilon RI case. Immunol Today, 1993, 14: 222–226 10.1016/0167-5699(93)90167-J, 1:CAS:528:DyaK3sXltlKru7g%3D, 8517921
    Article PubMed CAS Google Scholar
  22. Cooper N R. The classical complement pathway: Activation and regulation of the first complement component. Adv Immunol, 1985, 37: 151–216 10.1016/S0065-2776(08)60340-5, 1:CAS:528:DyaL2MXksFagsro%3D, 3890478
    Article PubMed CAS Google Scholar
  23. Kalesnikoff J, Huber M, Lam V, et al. Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity, 2001, 14: 801–811 10.1016/S1074-7613(01)00159-5, 1:CAS:528:DC%2BD3MXkvFSlt7g%3D, 11420049
    Article PubMed CAS Google Scholar
  24. Leibson P J. Signal transduction during natural killer cell activation: Inside the mind of a killer. Immunity, 1997, 6: 655–661 10.1016/S1074-7613(00)80441-0, 1:CAS:528:DyaK2sXktFCqs7Y%3D, 9208838
    Article PubMed CAS Google Scholar
  25. Takai T. Multiple loss of effector cell functions in FcR gammadeficient mice. Int Rev Immunol, 1996, 13: 369–381 10.3109/08830189609061759, 1:CAS:528:DyaK28XmtFChu70%3D, 8884432
    Article PubMed CAS Google Scholar
  26. Kim K D, Zhao J, Yang X, et al. Adaptive immune cells temper initial innate responses. Nat Med, 2007, 13: 1248–1252 10.1038/nm1207-1409, 1:CAS:528:DC%2BD2sXhtFagsbrN, 17891146
    Article PubMed CAS PubMed Central Google Scholar
  27. Kim K D, Zhao J, Auh S, et al. Adaptive immune cells temper initial innate responses. Nat Med, 2007, 13: 1248–1252 10.1038/nm1207-1409, 1:CAS:528:DC%2BD2sXhtFagsbrN, 17891146
    Article PubMed CAS PubMed Central Google Scholar
  28. Maloy K J, Salaun L, Cahill R, et al. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med, 2003, 197: 111–119 10.1084/jem.20021345, 1:CAS:528:DC%2BD3sXjslWltg%3D%3D, 12515818
    Article PubMed CAS PubMed Central Google Scholar
  29. Smyth M J, Teng M W, Swann J, et al. CD4+CD25+ T regulatory cells suppress NK cell-mediated immunotherapy of cancer. J Immunol, 2006, 176: 1582–1587 1:CAS:528:DC%2BD28XlsFynsw%3D%3D, 16424187
    Article PubMed CAS Google Scholar
  30. Tiemessen M M, Jagger A L, Evans H G, et al. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA, 2007, 104: 19446–19451 10.1073/pnas.0706832104, 1:CAS:528:DC%2BD1cXisVOhsA%3D%3D, 18042719
    Article PubMed CAS PubMed Central Google Scholar
  31. Garrett W S, Lord G M, Punit S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell, 2007, 131: 33–45 10.1016/j.cell.2007.08.017, 1:CAS:528:DC%2BD2sXht1CntLjF, 17923086
    Article PubMed CAS PubMed Central Google Scholar
  32. Miyara M, Sakaguchi S. Natural regulatory T cells: Mechanisms of suppression. Trends Mol Med, 2007, 13: 108–116 10.1016/j.molmed.2007.01.003, 1:CAS:528:DC%2BD2sXisl2kurg%3D, 17257897
    Article PubMed CAS Google Scholar
  33. Lund J M, Hsing L, Pham T T, et al. Coordination of early protective immunity to viral infection by regulatory T cells. Science, 2008, 320: 1220–1224 10.1126/science.1155209, 1:CAS:528:DC%2BD1cXmt1Oisrk%3D, 18436744
    Article PubMed CAS PubMed Central Google Scholar
  34. Zhang X, Deriaud E, Jiao X, et al. Type I interferons protect neonates from acute inflammation through interleukin 10-producing B cells. J Exp Med, 2007, 204: 1107–1118 10.1084/jem.20062013, 1:CAS:528:DC%2BD2sXlsFSjtrg%3D, 17485512
    Article PubMed CAS PubMed Central Google Scholar
  35. Zhao J, Kim K D, Yang X, et al. Hyper innate responses in neonates lead to increased morbidity and mortality after infection. Proc Natl Acad Sci USA, 2008, 105: 7528–7533 10.1073/pnas.0800152105, 1:CAS:528:DC%2BD1cXmvFGjurY%3D, 18490660
    Article PubMed CAS PubMed Central Google Scholar
  36. Adkins B, Leclerc C, Marshall-Clarke S. Neonatal adaptive immunity comes of age. Nat Rev Immunol, 2004, 4: 553–564 10.1038/nri1394, 1:CAS:528:DC%2BD2cXlt1Cqurg%3D, 15229474
    Article PubMed CAS Google Scholar
  37. Levy O. Innate immunity of the newborn: Basic mechanisms and clinical correlates. Nat Rev Immunol, 2007, 7: 379–390 10.1038/nri2075, 1:CAS:528:DC%2BD2sXksFeks7w%3D, 17457344
    Article PubMed CAS Google Scholar
  38. Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol, 2004, 4: 336–347 10.1038/nri1349, 1:CAS:528:DC%2BD2cXjsFChsrY%3D, 15122199
    Article PubMed CAS Google Scholar
  39. Sun Y, Brown N K, Ruddy M J, et al. B and T lymphocyte attenuator tempers early infection immunity. J Immunol, 2009, 183: 1946–1951 10.4049/jimmunol.0801866, 1:CAS:528:DC%2BD1MXoslCrsL0%3D, 19587015
    Article PubMed CAS PubMed Central Google Scholar
  40. Franchi L, Eigenbrod T, Munoz-Planillo R, et al. The inflammasome: A caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol, 2009, 10: 241–247 10.1038/ni.1703, 1:CAS:528:DC%2BD1MXhvFKjtLo%3D, 19221555
    Article PubMed CAS PubMed Central Google Scholar
  41. Martinon F, Mayor A, Tschopp J. The inflammasomes: Guardians of the body. Annu Rev Immunol, 2009, 27: 229–265 10.1146/annurev.immunol.021908.132715, 1:CAS:528:DC%2BD1MXlsFSlsbc%3D, 19302040
    Article PubMed CAS Google Scholar
  42. Ogura Y, Sutterwala F S, Flavell R A. The inflammasome: First line of the immune response to cell stress. Cell, 2006, 126: 659–662 10.1016/j.cell.2006.08.002, 1:CAS:528:DC%2BD28Xpt1aktbo%3D, 16923387
    Article PubMed CAS Google Scholar
  43. Tschopp J, Martinon F, Burns K. NALPs: A novel protein family involved in inflammation. Nat Rev Mol Cell Biol, 2003, 4: 95–104 10.1038/nrm1019, 1:CAS:528:DC%2BD3sXnsFaquw%3D%3D, 12563287
    Article PubMed CAS Google Scholar
  44. Church L D, Cook G P, McDermott M F. Primer: Inflammasomes and interleukin 1beta in inflammatory disorders. Nat Clin Pract Rheumatol, 2008, 4: 34–42 10.1038/ncprheum0681, 1:CAS:528:DC%2BD1cXhtlKjtQ%3D%3D, 18172447
    Article PubMed CAS Google Scholar
  45. McDermott M F, Tschopp J. From inflammasomes to fevers, crystals and hypertension: How basic research explains inflammatory diseases. Trends Mol Med, 2007, 13: 381–388 10.1016/j.molmed.2007.07.005, 1:CAS:528:DC%2BD2sXhtVCnsrnM, 17822957
    Article PubMed CAS Google Scholar
  46. Guarda G, Dostert C, Staehli F, et al. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature, 2009, 460: 269–273 10.1038/nature08100, 1:CAS:528:DC%2BD1MXmslCmtrs%3D, 19494813
    Article PubMed CAS Google Scholar
  47. O’sullivan B, Thomas R. CD40 and dendritic cell function. Crit Rev Immunol, 2003, 23: 83–107 10.1615/CritRevImmunol.v23.i12.50, 12906261
    Article PubMed Google Scholar
  48. Litman G W, Cannon J P, Dishaw L J. Reconstructing immune phylogeny: new perspectives. Nat Rev Immunol, 2005, 5: 866–879 10.1038/nri1712, 1:CAS:528:DC%2BD2MXhtFKls7jI, 16261174
    Article PubMed CAS PubMed Central Google Scholar
  49. Aggarwal K, Silverman N. Positive and negative regulation of the Drosophila immune response. BMB Rep, 2008, 41: 267–277 1:CAS:528:DC%2BD1cXlvFelsLw%3D, 18452646
    Article PubMed CAS Google Scholar
  50. Liew F Y, Xu D, Brint E K, et al. Negative regulation of toll-like receptor mediated immune responses. Nat Rev Immunol, 2005, 5: 446–458 10.1038/nri1630, 1:CAS:528:DC%2BD2MXks1GmsLo%3D, 15928677
    Article PubMed CAS Google Scholar
  51. Thomas R M, Linch D C. Identification of lymphocyte subsets in the newborn using a variety of monoclonal antibodies. Arch Dis Child, 1983, 58: 34–38 10.1136/adc.58.1.34, 1:STN:280:DyaL3s7ltFKhsA%3D%3D, 6219626
    Article PubMed CAS PubMed Central Google Scholar
  52. Heldrup J, Kalm O, Prellner K. Blood T and B lymphocyte subpopulations in healthy infants and children. Acta Paediatr, 1992, 81: 125–132 10.1111/j.1651-2227.1992.tb12187.x, 1:STN:280:DyaK38zos1Sjtg%3D%3D, 1515755
    Article PubMed CAS Google Scholar
  53. Kumar A, Jauhari P, Singh U, et al. Quantitation of T cells in venous blood of healthy neonates. Indian J Pediatr, 1994, 61: 711–714 10.1007/BF02751986, 1:STN:280:DyaK2M3jsl2htg%3D%3D, 7721377
    Article PubMed CAS Google Scholar
  54. Atici A, Satar M, Cetíner S, et al. Serum tumor necrosis factor-alpha in neonatal sepsis. Am J Perinatol, 1997, 14: 401–404 10.1055/s-2007-994168, 1:STN:280:DyaK2svgvFWntA%3D%3D, 9263559
    Article PubMed CAS Google Scholar
  55. Blackwell C C, Moscovis S M, Gordon A E, et al. Cytokine responses and sudden infant death syndrome: Genetic, developmental, and environmental risk factors. J Leukoc Biol, 2005, 78: 1242–1254 10.1189/jlb.0505253, 1:CAS:528:DC%2BD2MXhtleksLrI, 16204631
    Article PubMed CAS Google Scholar
  56. Ozdemir A, Oygür N, Gültekin M, et al. Neonatal tumor necrosis factor, interleukin-1 alpha, interleukin-1 beta, and interleukin-6 response to infection. Am J Perinatol, 1994, 11: 282–285 10.1055/s-2007-994592, 1:STN:280:DyaK2M%2Fjt1ektw%3D%3D, 7945622
    Article PubMed CAS Google Scholar
  57. Vege A, Rognum T O, Aasen A O, et al. Are elevated cerebrospinal fluid levels of IL-6 in sudden unexplained deaths, infectious deaths and deaths due to heart/lung disease in infants and children due to hypoxia? Acta Paediatr, 1998, 87: 819–824 10.1080/080352598750013563, 1:STN:280:DyaK1cvgsFKgtg%3D%3D, 9736227
    Article PubMed CAS Google Scholar
  58. Vege A, Rognum T O, Scott H, et al. SIDS cases have increased levels of interleukin-6 in cerebrospinal fluid. Acta Paediatr, 1995, 84: 193–196 10.1111/j.1651-2227.1995.tb13608.x, 1:STN:280:DyaK2M3ns1Cgtw%3D%3D, 7756807
    Article PubMed CAS Google Scholar
  59. Palm N W, Medzhitov, R. Not so fast: Adaptive suppression of innate immunity. Nat Med, 2007, 13: 1142–1144 10.1038/nm1007-1142b, 1:CAS:528:DC%2BD2sXhtFagsbrF, 17917657
    Article PubMed CAS Google Scholar

Download references