Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes (original) (raw)
Wicha MS, Liotta LA, Vonderhaar BK, Kidwell WR: Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Dev Biol. 1980, 80: 253-256. ArticleCASPubMed Google Scholar
Affolter M, Bellusci S, Itoh N, Shilo B, Thiery JP, Werb Z: Tube or not tube: remodeling epithelial tissues by branching morphogenesis. Dev Cell. 2003, 4: 11-18. ArticleCASPubMed Google Scholar
Morita K, Nogawa H: EGF-dependent lobule formation and FGF7-dependent stalk elongation in branching morphogenesis of mouse salivary epithelium in vitro. Dev Dyn. 1999, 215: 148-154. 10.1002/(SICI)1097-0177(199906)215:2<148::AID-DVDY7>3.3.CO;2-M. ArticleCASPubMed Google Scholar
Fukuda Y, Masuda Y, Kishi J, Hashimoto Y, Hayakawa T, Nogawa H, Nakanishi Y: The role of interstitial collagens in cleft formation of mouse embryonic submandibular gland during initial branching. Development. 1988, 103: 259-267. CASPubMed Google Scholar
Daniel CW, Smith GH: The mammary gland: a model for development. J Mammary Gland Biol Neoplasia. 1999, 4: 3-8. 10.1023/A:1018796301609. ArticleCASPubMed Google Scholar
Hennighausen L, Robinson GW: Signaling pathways in mammary gland development. Dev Cell. 2001, 1: 467-475. ArticleCASPubMed Google Scholar
Wiseman BS, Werb Z: Stromal effects on mammary gland development and breast cancer. Science. 2002, 296: 1046-1049. 10.1126/science.1067431. ArticleCASPubMedPubMed Central Google Scholar
Robinson GW, Karpf AB, Kratochwil K: Regulation of mammary gland development by tissue interaction. J Mammary Gland Biol Neoplasia. 1999, 4: 9-19. 10.1023/A:1018748418447. ArticleCASPubMed Google Scholar
Fata JE, Leco KJ, Moorehead RA, Martin DC, Khokha R: Timp-1 is important for epithelial proliferation and branching morphogenesis during mouse mammary development. Dev Biol. 1999, 211: 238-254. 10.1006/dbio.1999.9313. ArticleCASPubMed Google Scholar
Fata JE, Chaudhary V, Khokha R: Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17beta-estradiol during the estrous cycle. Biol Reprod. 2001, 65: 680-688. ArticleCASPubMed Google Scholar
Andres AC, Strange R: Apoptosis in the estrous and menstrual cycles. J Mammary Gland Biol Neoplasia. 1999, 4: 221-228. 10.1023/A:1018737510695. ArticleCASPubMed Google Scholar
Ferguson JE, Schor AM, Howell A, Ferguson MW: Changes in the extracellular matrix of the normal human breast during the menstrual cycle. Cell Tissue Res. 1992, 268: 167-177. ArticleCASPubMed Google Scholar
Robinson GW, Hennighausen L, Johnson PF: Side-branching in the mammary gland: the progesterone-Wnt connection. Genes Dev. 2000, 14: 889-894. CASPubMed Google Scholar
Osborne MP: Breast Development and Anatomy. Philadelphia: Lippincott-Raven Publishers. 1996 Google Scholar
Russo J, Russo IH: Development pattern of human breast and susceptibility to carcinogenesis. Eur J Cancer Prev. 1993, 3: 85-100. Google Scholar
Emerman JT, Vogl AW: Cell size and shape changes in the myoepithelium of the mammary gland during differentiation. Anat Rec. 1986, 216: 405-415. ArticleCASPubMed Google Scholar
Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW: Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci. 2002, 115: 39-50. CASPubMedPubMed Central Google Scholar
Silberstein GB, Daniel CW: Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev Biol. 1982, 90: 215-222. ArticleCASPubMed Google Scholar
Lochter A, Bissell MJ: Involvement of extracellular matrix constituents in breast cancer. Semin Cancer Biol. 1995, 6: 165-173. 10.1006/scbi.1995.0017. ArticleCASPubMed Google Scholar
Silberstein GB, Strickland P, Coleman S, Daniel CW: Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland. J Cell Biol. 1990, 110: 2209-2219. ArticleCASPubMed Google Scholar
Alford D, Taylor-Papadimitriou J: Cell adhesion molecules in the normal and cancerous mammary gland. J Mammary Gland Biol Neoplasia. 1996, 1: 207-218. ArticleCASPubMed Google Scholar
Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, Bissell MJ: Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol. 1997, 137: 231-245. 10.1083/jcb.137.1.231. ArticleCASPubMedPubMed Central Google Scholar
Elenius K, Salmivirta M, Inki P, Mali M, Jalkanen M: Binding of human syndecan to extracellular matrix proteins. J Biol Chem. 1990, 265: 17837-17843. CASPubMed Google Scholar
Barcellos-Hoff MH: Mammary epithelial reorganization on extracellular matrix is mediated by cell surface galactosyl-transferase. Exp Cell Res. 1992, 201: 225-234. ArticleCASPubMed Google Scholar
Belkin AM, Smalheiser NR: Localization of cranin (dystroglycan) at sites of cell-matrix and cell-cell contact: recruitment to focal adhesions is dependent upon extracellular ligands. Cell Adhes Commun. 1996, 4: 281-296. ArticleCASPubMed Google Scholar
Warfield PR, Makker PN, Raz A, Ochieng J: Adhesion of human breast carcinoma to extracellular matrix proteins is modulated by galectin-3. Invasion Metastasis. 1997, 17: 101-112. CASPubMed Google Scholar
Klinowska TC, Alexander CM, Georges-Labouesse E, Van der NR, Kreidberg JA, Jones CJ, Sonnenberg A, Streuli CH: Epithelial development and differentiation in the mammary gland is not dependent on alpha 3 or alpha 6 integrin subunits. Dev Biol. 2001, 233: 449-467. 10.1006/dbio.2001.0204. ArticleCASPubMed Google Scholar
Chen J, Diacovo TG, Grenache DG, Santoro SA, Zutter MM: The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am J Pathol. 2002, 161: 337-344. ArticleCASPubMedPubMed Central Google Scholar
Berdichevsky F, Alford D, D'Souza B, Taylor-Papadimitriou J: Branching morphogenesis of human mammary epithelial cells in collagen gels. J Cell Sci. 1994, 107: 3557-3568. CASPubMed Google Scholar
Stahl S, Weitzman S, Jones JC: The role of laminin-5 and its receptors in mammary epithelial cell branching morphogenesis. J Cell Sci. 1997, 110: 55-63. CASPubMed Google Scholar
Klinowska TC, Alexander CM, Georges-Labouesse E, Van der Neut R, Kreidberg JA, Jones CJ, Sonnenberg A, Streuli CH: Epithelial development and differentiation in the mammary gland is not dependent on alpha 3 or alpha 6 integrin subunits. Dev Biol. 2001, 233: 449-467. 10.1006/dbio.2001.0204. ArticleCASPubMed Google Scholar
Klinowska TC, Soriano JV, Edwards GM, Oliver JM, Valentijn AJ, Montesano R, Streuli CH: Laminin and beta1 integrins are crucial for normal mammary gland development in the mouse. Dev Biol. 1999, 215: 13-32. 10.1006/dbio.1999.9435. ArticleCASPubMed Google Scholar
Alford D, Baeckstrom D, Geyp M, Pitha P, Taylor-Papadimitriou J: Integrin-matrix interactions affect the form of the structures developing from human mammary epithelial cells in collagen or fibrin gels. J Cell Sci. 1998, 111: 521-532. CASPubMed Google Scholar
Arnaout MA, Goodman SL, Xiong JP: Coming to grips with integrin binding to ligands. Curr Opin Cell Biol. 2002, 14: 641-651. 10.1016/S0955-0674(02)00371-X. ArticleCASPubMed Google Scholar
Hathaway HJ, Shur BD: Mammary gland morphogenesis is inhibited in transgenic mice that overexpress cell surface beta1,4-galactosyltransferase. Development. 1996, 122: 2859-2872. CASPubMed Google Scholar
Muschler J, Levy D, Boudreau R, Henry M, Campbell K, Bissell MJ: A role for dystroglycan in epithelial polarization: loss of function in breast tumor cells. Cancer Res. 2002, 62: 7102-7109. CASPubMed Google Scholar
Durbeej M, Ekblom P: Dystroglycan and laminins: glycoconju-gates involved in branching epithelial morphogenesis. Exp Lung Res. 1997, 23: 109-118. ArticleCASPubMed Google Scholar
Vogel WF: Collagen-receptor signaling in health and disease. Eur J Dermatol. 2001, 11: 506-514. CASPubMed Google Scholar
Vogel WF, Aszodi A, Alves F, Pawson T: Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol. 2001, 21: 2906-2917. 10.1128/MCB.21.8.2906-2917.2001. ArticleCASPubMedPubMed Central Google Scholar
Bullock SL, Johnson TM, Bao Q, Hughes RC, Winyard PJ, Woolf AS: Galectin-3 modulates ureteric bud branching in organ culture of the developing mouse kidney. J Am Soc Nephrol. 2001, 12: 515-523. CASPubMed Google Scholar
Wessells NK, Cohen JH: Effects of collagenase on developing epithelia in vitro: lung, ureteric bud, and pancreas. Dev Biol. 1968, 18: 294-309. ArticleCASPubMed Google Scholar
Banerjee SD, Cohn RH, Bernfield MR: Basal lamina of embryonic salivary epithelia. Production by the epithelium and role in maintaining lobular morphology. J Cell Biol. 1977, 73: 445-463. ArticleCASPubMed Google Scholar
Nakanishi Y, Sugiura F, Kishi J, Hayakawa T: Collagenase inhibitor stimulates cleft formation during early morphogenesis of mouse salivary gland. Dev Biol. 1986, 113: 201-206. ArticleCASPubMed Google Scholar
Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA: Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol. 2001, 155: 459-470. 10.1083/jcb.200106070. ArticleCASPubMedPubMed Central Google Scholar
Rytomaa M, Lehmann K, Downward J: Matrix detachment induces caspase-dependent cytochrome c release from mito-chondria: inhibition by PKB/Akt but not Raf signalling. Oncogene. 2000, 19: 4461-4468. 10.1038/sj.onc.1203805. ArticleCASPubMed Google Scholar
Felbor U, Dreier L, Bryant RA, Ploegh HL, Olsen BR, Mothes W: Secreted cathepsin L generates endostatin from collagen XVIII. EMBO J. 2000, 19: 1187-1194. 10.1093/emboj/19.6.1187. ArticleCASPubMedPubMed Central Google Scholar
Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V: Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 1997, 277: 225-228. 10.1126/science.277.5323.225. ArticleCASPubMed Google Scholar
Whitelock JM, Murdoch AD, Iozzo RV, Underwood PA: The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem. 1996, 271: 10079-10086. 10.1074/jbc.271.17.10079. ArticleCASPubMed Google Scholar
Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlo-davsky I: Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry. 1989, 28: 1737-1743. ArticleCASPubMed Google Scholar
Sinha S, Nevett C, Shuttleworth CA, Kielty CM: Cellular and extracellular biology of the latent transforming growth factor-beta binding proteins. Matrix Biol. 1998, 17: 529-545. 10.1016/S0945-053X(98)90106-8. ArticleCASPubMed Google Scholar
Quarto N, Amalric F: Heparan sulfate proteoglycans as transducers of FGF-2 signalling. J Cell Sci. 1994, 107: 3201-3212. CASPubMed Google Scholar
Ito K, Okamoto I, Araki N, Kawano Y, Nakao M, Fujiyama S, Tomita K, Mimori T, Saya H: Calcium influx triggers the sequential proteolysis of extracellular and cytoplasmic domains of E-cad-herin, leading to loss of beta-catenin from cell-cell contacts. Oncogene. 1999, 18: 7080-7090. 10.1038/sj.onc.1203191. ArticleCASPubMed Google Scholar
Noe V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S, Stee-lant W, Bruyneel E, Matrisian LM, Mareel M: Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci. 2001, 114: 111-118. CASPubMed Google Scholar
Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ: Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mes-enchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol. 1997, 139: 1861-1872. 10.1083/jcb.139.7.1861. ArticleCASPubMedPubMed Central Google Scholar
Schlondorff J, Blobel CP: Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J Cell Sci. 1999, 112: 3603-3617. CASPubMed Google Scholar
Werb Z, Yan Y: A cellular striptease act. Science. 1998, 282: 1279-1280. 10.1126/science.282.5392.1279. ArticleCASPubMed Google Scholar
Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM: Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol. 2000, 18: 1135-1149. CASPubMed Google Scholar
Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA: Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993, 4: 197-250. ArticleCASPubMed Google Scholar
Egeblad M, Werb Z: New functions for the matrix metalloproteinases in cancer progression. Nat Rev, Cancer. 2002, 2: 161-174. 10.1038/nrc745. ArticleCASPubMed Google Scholar
Infeld MD: Cell-matrix interactions in gland development in the lung. Exp Lung Res. 1997, 23: 161-169. ArticleCASPubMed Google Scholar
Fukuda Y, Ishizaki M, Okada Y, Seiki M, Yamanaka N: Matrix metalloproteinases and tissue inhibitor of metalloproteinase-2 in fetal rabbit lung. Am J Physiol Lung Cell Mol Physiol. 2000, 279: 555-561. Google Scholar
Baker SE, Hopkinson SB, Fitchmun M, Andreason GL, Frasier F, Plopper G, Quaranta V, Jones JC: Laminin-5 and hemidesmosomes: role of the alpha 3 chain subunit in hemidesmosome stability and assembly. J Cell Sci. 1996, 109: 2509-2520. CASPubMed Google Scholar
Lelongt B, Trugnan G, Murphy G, Ronco PM: Matrix metalloproteinases MMP2 and MMP9 are produced in early stages of kidney morphogenesis but only MMP9 is required for renal organogenesis in vitro. J Cell Biol. 1997, 136: 1363-1373. 10.1083/jcb.136.6.1363. ArticleCASPubMedPubMed Central Google Scholar
Hayakawa T, Kishi J, Nakanishi Y: Salivary gland morphogenesis: possible involvement of collagenase. Matrix Suppl. 1992, 1: 344-351. CASPubMed Google Scholar
Talhouk RS, Chin JR, Unemori EN, Werb Z, Bissell MJ: Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture. Development. 1991, 112: 439-449. CASPubMedPubMed Central Google Scholar
Witty JP, Wright JH, Matrisian LM: Matrix metalloproteinases are expressed during ductal and alveolar mammary morphogenesis, and misregulation of stromelysin-1 in transgenic mice induces unscheduled alveolar development. Mol Biol Cell. 1995, 6: 1287-1303. ArticleCASPubMedPubMed Central Google Scholar
Sympson CJ, Talhouk RS, Alexander CM, Chin JR, Clift SM, Bissell MJ, Werb Z: Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression. J Cell Biol. 1994, 125: 681-693. ArticleCASPubMed Google Scholar
Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ, Werb Z: The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell. 1999, 98: 137-146. ArticleCASPubMedPubMed Central Google Scholar
Ha HY, Moon HB, Nam MS, Lee JW, Ryoo ZY, Lee TH, Lee KK, So BJ, Sato H, Seiki M, Yu DY: Overexpression of membrane-type matrix metalloproteinase-1 gene induces mammary gland abnormalities and adenocarcinoma in transgenic mice. Cancer Res. 2001, 61: 984-990. CASPubMed Google Scholar
Rudolph-Owen LA, Chan R, Muller WJ, Matrisian LM: The matrix metalloproteinase matrilysin influences early-stage mammary tumorigenesis. Cancer Res. 1998, 58: 5500-5506. CASPubMed Google Scholar
Kheradmand F, Rishi K, Werb Z: Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J Cell Sci. 2002, 115: 839-848. CASPubMedPubMed Central Google Scholar
Hotary K, Allen E, Punturieri A, Yana I, Weiss SJ: Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J Cell Biol. 2000, 149: 1309-1323. 10.1083/jcb.149.6.1309. ArticleCASPubMedPubMed Central Google Scholar
Desprez PY, Roskelley CD, Campisi J, Bissell MJ: Isolation of functional cell lines from a mouse mammary epithelial cell strain: the importance of basement membrane and cell-cell interactions. Mol Cell Diff. 1993, 1: 99-110. CAS Google Scholar
Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ: The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development. 2001, 128: 3117-3131. CASPubMedPubMed Central Google Scholar
Hay ED: An overview of epithelio-mesenchymal transformation. Acta Anat (Basel). 1995, 154: 8-20. ArticleCAS Google Scholar
Hirai Y, Lochter A, Galosy S, Koshida S, Niwa S, Bissell MJ: Epimorphin functions as a key morphoregulator for mammary epithelial cells. J Cell Biol. 1998, 140: 159-169. 10.1083/jcb.140.1.159. ArticleCASPubMedPubMed Central Google Scholar
Hirai Y, Radisky D, Boudreau R, Simian M, Stevens ME, Oka Y, Takebe K, Niwa S, Bissell MJ: Epimorphin mediates mammary luminal morphogenesis through control of C/EBPbeta. J Cell Biol. 2001, 153: 785-794. 10.1083/jcb.153.4.785. ArticleCASPubMedPubMed Central Google Scholar
Irigoyen JP, Munoz-Canoves P, Montero L, Koziczak M, Nagamine Y: The plasminogen activator system: biology and regulation. Cell Mol Life Sci. 1999, 56: 104-132. ArticleCASPubMed Google Scholar
Selvarajan S, Lund LR, Takeuchi T, Craik CS, Werb Z: A plasma kallikrein-dependent plasminogen cascade required for adipocyte differentiation. Nat Cell Biol. 2001, 3: 267-275. 10.1038/35060059. ArticleCASPubMedPubMed Central Google Scholar
Ganser GL, Stricklin GP, Matrisian LM: EGF and TGF alpha influence in vitro lung development by the induction of matrix-degrading metalloproteinases. Int J Dev Biol. 1991, 35: 453-461. CASPubMed Google Scholar
Kanwar YS, Ota K, Yang Q, Wada J, Kashihara N, Tian Y, Wallner EI: Role of membrane-type matrix metalloproteinase 1 (MT-1-MMP), MMP-2, and its inhibitor in nephrogenesis. Am J Physiol. 1999, 277: 934-947. Google Scholar
Vu TH, Werb Z: Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev. 2000, 14: 2123-2133. 10.1101/gad.815400. ArticleCASPubMed Google Scholar
Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V: Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol. 2000, 148: 615-624. 10.1083/jcb.148.3.615. ArticleCASPubMedPubMed Central Google Scholar
Hayakawa T, Yamashita K, Tanzawa K, Uchijima E, Iwata K: Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum. FEBS Lett. 1992, 298: 29-32. 10.1016/0014-5793(92)80015-9. ArticleCASPubMed Google Scholar
Hayakawa T, Yamashita K, Ohuchi E, Shinagawa A: Cell growth-promoting activity of tissue inhibitor of metalloproteinases-2 (TIMP-2). J Cell Sci. 1994, 107: 2373-2379. CASPubMed Google Scholar
Ellerbroek SM, Stack MS: Membrane associated matrix metalloproteinases in metastasis. Bioessays. 1999, 21: 940-949. 10.1002/(SICI)1521-1878(199911)21:11<940::AID-BIES6>3.3.CO;2-A. ArticleCASPubMed Google Scholar
Kadono Y, Shibahara K, Namiki M, Watanabe Y, Seiki M, Sato H: Membrane type 1-matrix metalloproteinase is involved in the formation of hepatocyte growth factor/scatter factor-induced branching tubules in madin-darby canine kidney epithelial cells. Biochem Biophys Res Commun. 1998, 251: 681-687. 10.1006/bbrc.1998.9531. ArticleCASPubMed Google Scholar
Amour A, Slocombe PM, Webster A, Butler M, Knight CG, Smith BJ, Stephens PE, Shelley C, Hutton M, Knauper V, Docherty AJ, Murphy G: TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Lett. 1998, 435: 39-44. 10.1016/S0014-5793(98)01031-X. ArticleCASPubMed Google Scholar
Yu WH, Yu S, Meng Q, Brew K, Woessner JF: TIMP-3 binds to sulfated glycosaminoglycans of the extracellular matrix. J Biol Chem. 2000, 275: 31226-31232. 10.1074/jbc.M000907200. ArticleCASPubMed Google Scholar
Fata JE, Leco KJ, Voura EB, Yu HY, Waterhouse P, Murphy G, Moorehead RA, Khokha R: Accelerated apoptosis in the Timp-3-deficient mammary gland. J Clin Invest. 2001, 108: 831-841. 10.1172/JCI200113171. ArticleCASPubMedPubMed Central Google Scholar
Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P: Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol. 2003, 160: 267-277. 10.1083/jcb.200209006. ArticleCASPubMedPubMed Central Google Scholar
Williams JM, Daniel CW: Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev Biol. 1983, 97: 274-290. ArticleCASPubMed Google Scholar
Petersen OW, Lind NH, Gudjonsson T, Villadsen R, Ronnov-Jessen L, Bissell MJ: The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion. Breast Cancer Res. 2001, 3: 213-217. 10.1186/bcr298. ArticleCASPubMed Google Scholar
van't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Bernards R, Friend SH: Expression profiling predicts outcome in breast cancer. Breast Cancer Res. 2002, 5: 57-58. 10.1186/bcr562. Article Google Scholar
van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002, 347: 1999-2009. 10.1056/NEJMoa021967. ArticleCASPubMed Google Scholar
Wang W, Wyckoff JB, Frohlich VC, Oleynikov Y, Huttelmaier S, Zavadil J, Cermak L, Bottinger EP, Singer RH, White JG, Segall JE, Condeelis JS: Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res. 2002, 62: 6278-6288. CASPubMed Google Scholar
Thompson EW, Yu M, Bueno J, Jin L, Maiti SN, Palao-Marco FL, Pulyaeva H, Tamborlane JW, Tirgari R, Wapnir I, et al: Collagen induced MMP-2 activation in human breast cancer. Breast Cancer Res Treat. 1994, 31: 357-370. ArticleCASPubMed Google Scholar
Lagace R, Grimaud JA, Schurch W, Seemayer TA: Myofibroblastic stromal reaction in carcinoma of the breast: variations of collagenous matrix and structural glycoproteins. Virchows Arch A Pathol Anat Histopathol. 1985, 408: 49-59. ArticleCASPubMed Google Scholar
Wetzels RH, Robben HC, Leigh IM, Schaafsma HE, Vooijs GP, Ramaekers FC: Distribution patterns of type VII collagen in normal and malignant human tissues. Am J Pathol. 1991, 139: 451-459. CASPubMedPubMed Central Google Scholar
Barsky SH, Rao CN, Grotendorst GR, Liotta LA: Increased content of Type V Collagen in desmoplasia of human breast carcinoma. Am J Pathol. 1982, 108: 276-283. CASPubMedPubMed Central Google Scholar
D'Ardenne AJ, Richman PI, Horton MA, McAulay AE, Jordan S: Co-ordinate expression of the alpha-6 integrin laminin receptor sub-unit and laminin in breast cancer. J Pathol. 1991, 165: 213-220. ArticlePubMed Google Scholar
Rudolph-Owen LA, Matrisian LM: Matrix metalloproteinases in remodeling of the normal and neoplastic mammary gland. J Mammary Gland Biol Neoplasia. 1998, 3: 177-189. 10.1023/A:1018746923474. ArticleCASPubMed Google Scholar
Zutter MM, Mazoujian G, Santoro SA: Decreased expression of integrin adhesive protein receptors in adenocarcinoma of the breast. Am J Pathol. 1990, 137: 863-870. CASPubMedPubMed Central Google Scholar
Zutter MM, Krigman HR, Santoro SA: Altered integrin expression in adenocarcinoma of the breast. Analysis by in situ hybridization. Am J Pathol. 1993, 142: 1439-1448. CASPubMedPubMed Central Google Scholar
Warner MR: Effect of various doses of estrogen to BALB/cCrgl neonatal female mice on mammary growth and branching at 5 weeks of age. Cell Tissue Kinet. 1976, 9: 429-438. CASPubMed Google Scholar
Daniel CW, Silberstein GB, Strickland P: Direct action of 17 beta-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res. 1987, 47: 6052-6057. CASPubMed Google Scholar
Silberstein GB, Van Horn K, Shyamala G, Daniel CW: Essential role of endogenous estrogen in directly stimulating mammary growth demonstrated by implants containing pure antiestrogens. Endocrinology. 1994, 134: 84-90. 10.1210/en.134.1.84. CASPubMed Google Scholar
Atwood CS, Hovey RC, Glover JP, Chepko G, Ginsburg E, Robison WG, Vonderhaar BK: Progesterone induces side-branching of the ductal epithelium in the mammary glands of peripubertal mice. J Endocrinol. 2000, 167: 39-52. ArticleCASPubMed Google Scholar
Wysolmerski JJ, Philbrick WM, Dunbar ME, Lanske B, Kronenberg H, Broadus AE: Rescue of the parathyroid hormone-related protein knockout mouse demonstrates that parathyroid hormone-related protein is essential for mammary gland development. Development. 1998, 125: 1285-1294. CASPubMed Google Scholar
Wysolmerski JJ, McCaughern-Carucci JF, Daifotis AG, Broadus AE, Philbrick WM: Overexpression of parathyroid hormone-related protein or parathyroid hormone in transgenic mice impairs branching morphogenesis during mammary gland development. Development. 1995, 121: 3539-3547. CASPubMed Google Scholar
Zhu Z, Jiang W, Thompson HJ: Effect of corticosterone administration on mammary gland development and p27 expression and their relationship to the effects of energy restriction on mammary carcinogenesis. Carcinogenesis. 1998, 19: 2101-2106. 10.1093/carcin/19.12.2101. ArticleCASPubMed Google Scholar
Coleman S, Silberstein GB, Daniel CW: Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor. Dev Biol. 1988, 127: 304-315. ArticleCASPubMed Google Scholar
Robinson SD, Silberstein GB, Roberts AB, Flanders KC, Daniel CW: Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development. 1991, 113: 867-878. CASPubMed Google Scholar
Silberstein GB, Daniel CW: Reversible inhibition of mammary gland growth by transforming growth factor-beta. Science. 1987, 237: 291-293. ArticleCASPubMed Google Scholar
Ruan W, Kleinberg DL: Insulin-like growth factor I is essential for terminal end bud formation and ductal morphogenesis during mammary development. Endocrinology. 1999, 140: 5075-5081. 10.1210/en.140.11.5075. CASPubMed Google Scholar
Yant J, Buluwela L, Niranjan B, Gusterson B, Kamalati T: In vivo effects of hepatocyte growth factor/scatter factor on mouse mammary gland development. Exp Cell Res. 1998, 241: 476-481. 10.1006/excr.1998.4028. ArticleCASPubMed Google Scholar
Bani G, Bigazzi M, Bani D: The effects of relaxin on the mouse mammary gland. II. The epithelium. J Endocrinol Invest. 1986, 9: 145-152. ArticleCASPubMed Google Scholar
Kenney NJ, Smith GH, Rosenberg K, Cutler ML, Dickson RB: Induction of ductal morphogenesis and lobular hyperplasia by amphiregulin in the mouse mammary gland. Cell Growth Differ. 1996, 7: 1769-1781. CASPubMed Google Scholar
Jones FE, Jerry DJ, Guarino BC, Andrews GC, Stern DF: Heregulin induces in vivo proliferation and differentiation of mammary epithelium into secretory lobuloalveoli. Cell Growth Differ. 1996, 7: 1031-1038. CASPubMed Google Scholar
Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, McMahon JA, McMahon AP, Weinberg RA: Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev. 2000, 14: 650-654. CASPubMedPubMed Central Google Scholar
Bradbury JM, Edwards PA, Niemeyer CC, Dale TC: Wnt-4 expression induces a pregnancy-like growth pattern in reconstituted mammary glands in virgin mice. Dev Biol. 1995, 170: 553-563. 10.1006/dbio.1995.1236. ArticleCASPubMed Google Scholar
Mukherjee S, Louie SG, Campbell M, Esserman L, Shyamala G: Ductal growth is impeded in mammary glands of C-neu transgenic mice. Oncogene. 2000, 19: 5982-5987. 10.1038/sj.onc.1203964. ArticleCASPubMed Google Scholar
Gouon-Evans V, Rothenberg ME, Pollard JW: Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000, 127: 2269-2282. CASPubMed Google Scholar
Wiesen JF, Young P, Werb Z, Cunha GR: Signaling through the stromal epidermal growth factor receptor is necessary for mammary ductal development. Development. 1999, 126: 335-344. CASPubMed Google Scholar
Xie W, Paterson AJ, Chin E, Nabell LM, Kudlow JE: Targeted expression of a dominant negative epidermal growth factor receptor in the mammary gland of transgenic mice inhibits pubertal mammary duct development. Mol Endocrinol. 1997, 11: 1766-1781. 10.1210/me.11.12.1766. ArticleCASPubMed Google Scholar
Bocchinfuso WP, Lindzey JK, Hewitt SC, Clark JA, Myers PH, Cooper R, Korach KS: Induction of mammary gland development in estrogen receptor-alpha knockout mice. Endocrinology. 2000, 141: 2982-2994. 10.1210/en.141.8.2982. CASPubMed Google Scholar
Shyamala G, Yang X, Silberstein G, Barcellos-Hoff MH, Dale E: Transgenic mice carrying an imbalance in the native ratio of A to B forms of progesterone receptor exhibit developmental abnormalities in mammary glands. Proc Natl Acad Sci USA. 1998, 95: 696-701. 10.1073/pnas.95.2.696. ArticleCASPubMedPubMed Central Google Scholar
Brisken C, Kaur S, Chavarria TE, Binart N, Sutherland RL, Weinberg RA, Kelly PA, Ormandy CJ: Prolactin controls mammary gland development via direct and indirect mechanisms. Dev Biol. 1999, 210: 96-106. 10.1006/dbio.1999.9271. ArticleCASPubMed Google Scholar
Joseph H, Gorska AE, Sohn P, Moses HL, Serra R: Overexpression of a kinase-deficient transforming growth factor-beta type II receptor in mouse mammary stroma results in increased epithelial branching. Mol Biol Cell. 1999, 10: 1221-1234. ArticleCASPubMedPubMed Central Google Scholar
Seagroves TN, Krnacik S, Raught B, Gay J, Burgess-Beusse B, Darlington GJ, Rosen JM: C/EBPbeta, but not C/EBPalpha, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes Dev. 1998, 12: 1917-1928. ArticleCASPubMedPubMed Central Google Scholar
Robinson GW, Johnson PF, Hennighausen L, Sterneck E: The C/EBPbeta transcription factor regulates epithelial cell proliferation and differentiation in the mammary gland. Genes Dev. 1998, 12: 1907-1916. ArticleCASPubMedPubMed Central Google Scholar
Crowley MR, Head KL, Kwiatkowski DJ, Asch HL, Asch BB: The mouse mammary gland requires the actin-binding protein gelsolin for proper ductal morphogenesis. Dev Biol. 2000, 225: 407-423. 10.1006/dbio.2000.9844. ArticleCASPubMed Google Scholar
Garcia-Gasca A, Spyropoulos DD: Differential mammary morphogenesis along the anteroposterior axis in Hoxc6 gene targeted mice. Dev Dyn. 2000, 219: 261-276. 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1048>3.0.CO;2-3. ArticleCASPubMed Google Scholar
Darribere T, Skalski M, Cousin HL, Gaultier A, Montmory C, Alfandari D: Integrins: regulators of embryogenesis. Biol Cell. 2000, 92: 5-25. 10.1016/S0248-4900(00)88760-2. ArticleCASPubMed Google Scholar