Cloning and characterization of a novel human histone deacetylase, HDAC8 (original) (raw)

. 2000 Aug 15;350(Pt 1):199–205.

Abstract

Histone deacetylases (HDACs) are a growing family of enzymes implicated in transcriptional regulation by affecting the acetylation state of core histones in the nucleus of cells. HDACs are known to have key roles in the regulation of cell proliferation [Brehm, Miska, McCance, Reid, Bannister and Kouzarides (1998) Nature (London) 391, 597-600], and aberrant recruitment of an HDAC complex has been shown to be a key step in the mechanism of cell transformation in acute promyelocytic leukaemia [Grignani, De Matteis, Nervi, Tomassoni, Gelmetti, Cioce, Fanelli, Ruthardt, Ferrara, Zamir et al. (1998) Nature (London) 391, 815-818; Lin, Nagy, Inoue, Shao, Miller and Evans (1998), Nature (London) 391, 811-814]. Here we present the complete nucleotide sequence of a cDNA clone, termed HDAC8, that encodes a protein product with similarity to the RPD3 class (I) of HDACs. The predicted 377-residue HDAC8 product contains a shorter C-terminal extension relative to other members of its class. After expression in two cell systems, immunopurified HDAC8 is shown to possess trichostatin A- and sodium butyrate-inhibitable HDAC activity on histone H4 peptide substrates as well as on core histones. Expression profiling reveals the expression of HDAC8 to various degrees in every tissue tested and also in several tumour lines. Mutation of two adjacent histidine residues within the predicted active site severely decreases activity, confirming these residues as important for HDAC8 enzyme activity. Finally, linkage analysis after radiation hybrid mapping has localized HDAC8 to chromosomal position Xq21.2-Xq21.3. These results confirm HDAC8 as a new member of the HDAC family.

Full Text

The Full Text of this article is available as a PDF (267.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alland L., Muhle R., Hou H., Jr, Potes J., Chin L., Schreiber-Agus N., DePinho R. A. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature. 1997 May 1;387(6628):49–55. doi: 10.1038/387049a0. [DOI] [PubMed] [Google Scholar]
  2. Archer S. Y., Meng S., Shei A., Hodin R. A. p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6791–6796. doi: 10.1073/pnas.95.12.6791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bakin A. V., Curran T. Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science. 1999 Jan 15;283(5400):387–390. doi: 10.1126/science.283.5400.387. [DOI] [PubMed] [Google Scholar]
  4. Betz R., Gray S. G., Ekström C., Larsson C., Ekström T. J. Human histone deacetylase 2, HDAC2 (Human RPD3), is localized to 6q21 by radiation hybrid mapping. Genomics. 1998 Sep 1;52(2):245–246. doi: 10.1006/geno.1998.5435. [DOI] [PubMed] [Google Scholar]
  5. Brehm A., Miska E. A., McCance D. J., Reid J. L., Bannister A. J., Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature. 1998 Feb 5;391(6667):597–601. doi: 10.1038/35404. [DOI] [PubMed] [Google Scholar]
  6. Carmen A. A., Rundlett S. E., Grunstein M. HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex. J Biol Chem. 1996 Jun 28;271(26):15837–15844. doi: 10.1074/jbc.271.26.15837. [DOI] [PubMed] [Google Scholar]
  7. Cioe L., McNab A., Hubbell H. R., Meo P., Curtis P., Rovera G. Differential expression of the globin genes in human leukemia K562(S) cells induced to differentiate by hemin or butyric acid. Cancer Res. 1981 Jan;41(1):237–243. [PubMed] [Google Scholar]
  8. Emiliani S., Fischle W., Van Lint C., Al-Abed Y., Verdin E. Characterization of a human RPD3 ortholog, HDAC3. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2795–2800. doi: 10.1073/pnas.95.6.2795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Finnin M. S., Donigian J. R., Cohen A., Richon V. M., Rifkind R. A., Marks P. A., Breslow R., Pavletich N. P. Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature. 1999 Sep 9;401(6749):188–193. doi: 10.1038/43710. [DOI] [PubMed] [Google Scholar]
  10. Fischle W., Emiliani S., Hendzel M. J., Nagase T., Nomura N., Voelter W., Verdin E. A new family of human histone deacetylases related to Saccharomyces cerevisiae HDA1p. J Biol Chem. 1999 Apr 23;274(17):11713–11720. doi: 10.1074/jbc.274.17.11713. [DOI] [PubMed] [Google Scholar]
  11. Gelmetti V., Zhang J., Fanelli M., Minucci S., Pelicci P. G., Lazar M. A. Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol. 1998 Dec;18(12):7185–7191. doi: 10.1128/mcb.18.12.7185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gilbert S. L., Sharp P. A. Promoter-specific hypoacetylation of X-inactivated genes. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13825–13830. doi: 10.1073/pnas.96.24.13825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gillenwater A., Xu X. C., Estrov Y., Sacks P. G., Lotan D., Lotan R. Modulation of galectin-1 content in human head and neck squamous carcinoma cells by sodium butyrate. Int J Cancer. 1998 Jan 19;75(2):217–224. doi: 10.1002/(sici)1097-0215(19980119)75:2<217::aid-ijc9>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
  14. Graham K. A., Buick R. N. Sodium butyrate induces differentiation in breast cancer cell lines expressing the estrogen receptor. J Cell Physiol. 1988 Jul;136(1):63–71. doi: 10.1002/jcp.1041360108. [DOI] [PubMed] [Google Scholar]
  15. Grignani F., De Matteis S., Nervi C., Tomassoni L., Gelmetti V., Cioce M., Fanelli M., Ruthardt M., Ferrara F. F., Zamir I. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature. 1998 Feb 19;391(6669):815–818. doi: 10.1038/35901. [DOI] [PubMed] [Google Scholar]
  16. Grozinger C. M., Hassig C. A., Schreiber S. L. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):4868–4873. doi: 10.1073/pnas.96.9.4868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grunstein M. Histone acetylation in chromatin structure and transcription. Nature. 1997 Sep 25;389(6649):349–352. doi: 10.1038/38664. [DOI] [PubMed] [Google Scholar]
  18. Hassig C. A., Tong J. K., Fleischer T. C., Owa T., Grable P. G., Ayer D. E., Schreiber S. L. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc Natl Acad Sci U S A. 1998 Mar 31;95(7):3519–3524. doi: 10.1073/pnas.95.7.3519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hoessly M. C., Rossi R. M., Fischkoff S. A. Factors responsible for variable reported lineages of HL-60 cells induced to mature with butyric acid. Cancer Res. 1989 Jul 1;49(13):3594–3597. [PubMed] [Google Scholar]
  20. Horton R. M., Cai Z. L., Ho S. N., Pease L. R. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques. 1990 May;8(5):528–535. [PubMed] [Google Scholar]
  21. Kao H. Y., Downes M., Ordentlich P., Evans R. M. Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes Dev. 2000 Jan 1;14(1):55–66. [PMC free article] [PubMed] [Google Scholar]
  22. Kim Y. S., Tsao D., Siddiqui B., Whitehead J. S., Arnstein P., Bennett J., Hicks J. Effects of sodium butyrate and dimethylsulfoxide on biochemical properties of human colon cancer cells. Cancer. 1980 Mar 15;45(5 Suppl):1185–1192. doi: 10.1002/1097-0142(19800315)45:5+<1185::aid-cncr2820451324>3.0.co;2-w. [DOI] [PubMed] [Google Scholar]
  23. Laherty C. D., Yang W. M., Sun J. M., Davie J. R., Seto E., Eisenman R. N. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell. 1997 May 2;89(3):349–356. doi: 10.1016/s0092-8674(00)80215-9. [DOI] [PubMed] [Google Scholar]
  24. Lin R. J., Nagy L., Inoue S., Shao W., Miller W. H., Jr, Evans R. M. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature. 1998 Feb 19;391(6669):811–814. doi: 10.1038/35895. [DOI] [PubMed] [Google Scholar]
  25. Luo R. X., Postigo A. A., Dean D. C. Rb interacts with histone deacetylase to repress transcription. Cell. 1998 Feb 20;92(4):463–473. doi: 10.1016/s0092-8674(00)80940-x. [DOI] [PubMed] [Google Scholar]
  26. Magnaghi-Jaulin L., Groisman R., Naguibneva I., Robin P., Lorain S., Le Villain J. P., Troalen F., Trouche D., Harel-Bellan A. Retinoblastoma protein represses transcription by recruiting a histone deacetylase. Nature. 1998 Feb 5;391(6667):601–605. doi: 10.1038/35410. [DOI] [PubMed] [Google Scholar]
  27. Mahlknecht U., Emiliani S., Najfeld V., Young S., Verdin E. Genomic organization and chromosomal localization of the human histone deacetylase 3 gene. Genomics. 1999 Mar 1;56(2):197–202. doi: 10.1006/geno.1998.5645. [DOI] [PubMed] [Google Scholar]
  28. McBain J. A., Eastman A., Nobel C. S., Mueller G. C. Apoptotic death in adenocarcinoma cell lines induced by butyrate and other histone deacetylase inhibitors. Biochem Pharmacol. 1997 May 9;53(9):1357–1368. doi: 10.1016/s0006-2952(96)00904-5. [DOI] [PubMed] [Google Scholar]
  29. Migeon B. R., Stetten G., Tuck-Muller C., Axelman J., Jani M., Dungy D. Molecular characterization of a deleted X chromosome (Xq13.3-Xq21.31) exhibiting random X inactivation. Somat Cell Mol Genet. 1995 Mar;21(2):113–120. doi: 10.1007/BF02255786. [DOI] [PubMed] [Google Scholar]
  30. O'Neill L. P., Keohane A. M., Lavender J. S., McCabe V., Heard E., Avner P., Brockdorff N., Turner B. M. A developmental switch in H4 acetylation upstream of Xist plays a role in X chromosome inactivation. EMBO J. 1999 May 17;18(10):2897–2907. doi: 10.1093/emboj/18.10.2897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ryan M. P., Borenfreund E., Higgins P. J. Butyrate-induced cytoarchitectural reorganization of Mallory body-containing rat hepatic tumor cells. J Natl Cancer Inst. 1987 Sep;79(3):555–567. [PubMed] [Google Scholar]
  32. Saito A., Yamashita T., Mariko Y., Nosaka Y., Tsuchiya K., Ando T., Suzuki T., Tsuruo T., Nakanishi O. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4592–4597. doi: 10.1073/pnas.96.8.4592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Saunders N., Dicker A., Popa C., Jones S., Dahler A. Histone deacetylase inhibitors as potential anti-skin cancer agents. Cancer Res. 1999 Jan 15;59(2):399–404. [PubMed] [Google Scholar]
  34. Taunton J., Hassig C. A., Schreiber S. L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science. 1996 Apr 19;272(5260):408–411. doi: 10.1126/science.272.5260.408. [DOI] [PubMed] [Google Scholar]
  35. Vidal M., Gaber R. F. RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Mol Cell Biol. 1991 Dec;11(12):6317–6327. doi: 10.1128/mcb.11.12.6317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vust A., Riordan D., Wickstrom D., Chudley A. E., Dawson A. J. Functional mosaic trisomy of 1q12-->1q21 resulting from X-autosome insertion translocation with random inactivation. Clin Genet. 1998 Jul;54(1):70–73. doi: 10.1111/j.1399-0004.1998.tb03697.x. [DOI] [PubMed] [Google Scholar]
  37. Wakefield M. J., Keohane A. M., Turner B. M., Graves J. A. Histone underacetylation is an ancient component of mammalian X chromosome inactivation. Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9665–9668. doi: 10.1073/pnas.94.18.9665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Walia H., Chen H. Y., Sun J. M., Holth L. T., Davie J. R. Histone acetylation is required to maintain the unfolded nucleosome structure associated with transcribing DNA. J Biol Chem. 1998 Jun 5;273(23):14516–14522. doi: 10.1074/jbc.273.23.14516. [DOI] [PubMed] [Google Scholar]
  39. Wang J., Hoshino T., Redner R. L., Kajigaya S., Liu J. M. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci U S A. 1998 Sep 1;95(18):10860–10865. doi: 10.1073/pnas.95.18.10860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Warrell R. P., Jr, He L. Z., Richon V., Calleja E., Pandolfi P. P. Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst. 1998 Nov 4;90(21):1621–1625. doi: 10.1093/jnci/90.21.1621. [DOI] [PubMed] [Google Scholar]
  41. Winer J., Jung C. K., Shackel I., Williams P. M. Development and validation of real-time quantitative reverse transcriptase-polymerase chain reaction for monitoring gene expression in cardiac myocytes in vitro. Anal Biochem. 1999 May 15;270(1):41–49. doi: 10.1006/abio.1999.4085. [DOI] [PubMed] [Google Scholar]
  42. Yang W. M., Yao Y. L., Sun J. M., Davie J. R., Seto E. Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family. J Biol Chem. 1997 Oct 31;272(44):28001–28007. doi: 10.1074/jbc.272.44.28001. [DOI] [PubMed] [Google Scholar]