Role of ubiquitin in proteasomal degradation of mutant alpha(1)-antitrypsin Z in the endoplasmic reticulum - PubMed (original) (raw)

Role of ubiquitin in proteasomal degradation of mutant alpha(1)-antitrypsin Z in the endoplasmic reticulum

J H Teckman et al. Am J Physiol Gastrointest Liver Physiol. 2000 Jan.

Free article

Abstract

A delay in intracellular degradation of the mutant alpha(1)-antitrypsin (alpha(1)AT)Z molecule is associated with greater retention within the endoplasmic reticulum (ER) and susceptibility to liver disease in a subgroup of patients with alpha(1)AT deficiency. Recent studies have shown that alpha(1)ATZ is ordinarily degraded in the ER by a mechanism that involves the proteasome, as demonstrated in intact cells using human fibroblast cell lines engineered for expression of alpha(1)ATZ and in a cell-free microsomal translocation assay system programmed with purified alpha(1)ATZ mRNA. To determine whether the ubiquitin system is required for proteasomal degradation of alpha(1)ATZ and whether specific components of the ubiquitin system can be implicated, we have now used two approaches. First, we overexpressed a dominant-negative ubiquitin mutant (UbK48R-G76A) by transient transfection in the human fibroblast cell lines expressing alpha(1)ATZ. The results showed that there was marked, specific, and selective inhibition of alpha(1)ATZ degradation mediated by UbK48R-G76A, indicating that the ubiquitin system is at least in part involved in ER degradation of alpha(1)ATZ. Second, we subjected reticulocyte lysate to DE52 chromatography and tested the resulting well-characterized fractions in the cell-free system. The results showed that there were both ubiquitin-dependent and -independent proteasomal mechanisms for degradation of alpha(1)ATZ and that the ubiquitin-conjugating enzyme E2-F1 may play a role in the ubiquitin-dependent proteasomal mechanism.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources