The plastid ribosomal proteins. Identification of all the proteins in the 30 S subunit of an organelle ribosome (chloroplast) - PubMed (original) (raw)
. 2000 Sep 15;275(37):28455-65.
doi: 10.1074/jbc.M004350200.
Affiliations
- PMID: 10874039
- DOI: 10.1074/jbc.M004350200
Free article
The plastid ribosomal proteins. Identification of all the proteins in the 30 S subunit of an organelle ribosome (chloroplast)
K Yamaguchi et al. J Biol Chem. 2000.
Free article
Abstract
Identification of all the protein components of a plastid (chloroplast) ribosomal 30 S subunit has been achieved, using two-dimensional gel electropholesis, high performance liquid chromatography purification, N-terminal sequencing, polymerase chain reaction-based screening of cDNA library, nucleotide sequencing, and mass spectrometry (electrospray ionization, matrix-assisted laser desorption/ionization time-of-flight, and reversed-phase HPLC coupled with electrospray ionization mass spectrometry). 25 proteins were identified, of which 21 are orthologues of all Escherichia coli 30 S ribosomal proteins (S1-S21), and 4 are plastid-specific ribosomal proteins (PSRPs) that have no homologues in the mitochondrial, archaebacterial, or cytosolic ribosomal protein sequences in data bases. 12 of the 25 plastid 30 S ribosomal proteins (PRPs) are encoded in the plastid genome, whereas the remaining 13 are encoded by the nuclear genome. Post-translational transit peptide cleavage sites for the maturation of the 13 cytosolically synthesized PRPs, and post-translational N-terminal processing in the maturation of the 12 plastid synthesized PRPs are described. Post-translational modifications in several PRPs were observed: alpha-N-acetylation of S9, N-terminal processings leading to five mature forms of S6 and two mature forms of S10, C-terminal and/or internal modifications in S1, S14, S18, and S19, leading to two distinct forms differing in mass and/or charge (the corresponding modifications are not observed in E. coli). The four PSRPs in spinach plastid 30 S ribosomal subunit (PSRP-1, 26.8 kDa, pI 6.2; PSRP-2, 21.7 kDa, pI 5.0; PSRP-3, 13.8 kDa, pI 4.9; PSRP-4, 5.2 kDa, pI 11.8) comprise 16% (67.6 kDa) of the total protein mass of the 30 S subunit (429.3 kDa). PSRP-1 and PSRP-3 show sequence similarities with hypothetical photosynthetic bacterial proteins, indicating their possible origins in photosynthetic bacteria. We propose the hypothesis that PSRPs form a "plastid translational regulatory module" on the 30 S ribosomal subunit structure for the possible mediation of nuclear factors on plastid translation.
Similar articles
- The plastid ribosomal proteins. Identification of all the proteins in the 50 S subunit of an organelle ribosome (chloroplast).
Yamaguchi K, Subramanian AR. Yamaguchi K, et al. J Biol Chem. 2000 Sep 15;275(37):28466-82. doi: 10.1074/jbc.M005012200. J Biol Chem. 2000. PMID: 10874046 - Proteomic identification of all plastid-specific ribosomal proteins in higher plant chloroplast 30S ribosomal subunit.
Yamaguchi K, Subramanian AR. Yamaguchi K, et al. Eur J Biochem. 2003 Jan;270(2):190-205. doi: 10.1046/j.1432-1033.2003.03359.x. Eur J Biochem. 2003. PMID: 12605670 - Proteomic characterization of the small subunit of Chlamydomonas reinhardtii chloroplast ribosome: identification of a novel S1 domain-containing protein and unusually large orthologs of bacterial S2, S3, and S5.
Yamaguchi K, Prieto S, Beligni MV, Haynes PA, McDonald WH, Yates JR 3rd, Mayfield SP. Yamaguchi K, et al. Plant Cell. 2002 Nov;14(11):2957-74. doi: 10.1105/tpc.004341. Plant Cell. 2002. PMID: 12417713 Free PMC article. - Unveiling the functions of plastid ribosomal proteins in plant development and abiotic stress tolerance.
Robles P, Quesada V. Robles P, et al. Plant Physiol Biochem. 2022 Oct 15;189:35-45. doi: 10.1016/j.plaphy.2022.07.029. Epub 2022 Aug 2. Plant Physiol Biochem. 2022. PMID: 36041366 Review. - Thiazolyl peptide antibiotic biosynthesis: a cascade of post-translational modifications on ribosomal nascent proteins.
Walsh CT, Acker MG, Bowers AA. Walsh CT, et al. J Biol Chem. 2010 Sep 3;285(36):27525-31. doi: 10.1074/jbc.R110.135970. Epub 2010 Jun 3. J Biol Chem. 2010. PMID: 20522549 Free PMC article. Review.
Cited by
- Guanosine tetra- and pentaphosphate synthase activity in chloroplasts of a higher plant: association with 70S ribosomes and inhibition by tetracycline.
Kasai K, Kanno T, Endo Y, Wakasa K, Tozawa Y. Kasai K, et al. Nucleic Acids Res. 2004 Oct 26;32(19):5732-41. doi: 10.1093/nar/gkh916. Print 2004. Nucleic Acids Res. 2004. PMID: 15507686 Free PMC article. - Nonessential plastid-encoded ribosomal proteins in tobacco: a developmental role for plastid translation and implications for reductive genome evolution.
Fleischmann TT, Scharff LB, Alkatib S, Hasdorf S, Schöttler MA, Bock R. Fleischmann TT, et al. Plant Cell. 2011 Sep;23(9):3137-55. doi: 10.1105/tpc.111.088906. Epub 2011 Sep 20. Plant Cell. 2011. PMID: 21934145 Free PMC article. - Comparing Early Eukaryotic Integration of Mitochondria and Chloroplasts in the Light of Internal ROS Challenges: Timing is of the Essence.
Speijer D, Hammond M, Lukeš J. Speijer D, et al. mBio. 2020 May 19;11(3):e00955-20. doi: 10.1128/mBio.00955-20. mBio. 2020. PMID: 32430475 Free PMC article. - The Pentatricopeptide Repeat Protein EMB2654 Is Essential for Trans-Splicing of a Chloroplast Small Ribosomal Subunit Transcript.
Aryamanesh N, Ruwe H, Sanglard LV, Eshraghi L, Bussell JD, Howell KA, Small I, des Francs-Small CC. Aryamanesh N, et al. Plant Physiol. 2017 Feb;173(2):1164-1176. doi: 10.1104/pp.16.01840. Epub 2016 Dec 23. Plant Physiol. 2017. PMID: 28011633 Free PMC article. - Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale.
Lecompte O, Ripp R, Thierry JC, Moras D, Poch O. Lecompte O, et al. Nucleic Acids Res. 2002 Dec 15;30(24):5382-90. doi: 10.1093/nar/gkf693. Nucleic Acids Res. 2002. PMID: 12490706 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous