Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities - PubMed (original) (raw)
Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities
S Dowler et al. Biochem J. 2000.
Abstract
The second messenger phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] is generated by the action of phosphoinositide 3-kinase (PI 3-kinase), and regulates a plethora of cellular processes. An approach for dissecting the mechanisms by which these processes are regulated is to identify proteins that interact specifically with PtdIns(3,4,5)P(3). The pleckstrin homology (PH) domain has become recognized as the specialized module used by many proteins to interact with PtdIns(3,4,5)P(3). Recent work has led to the identification of a putative phosphatidylinositol 3,4,5-trisphosphate-binding motif (PPBM) at the N-terminal regions of PH domains that interact with this lipid. We have searched expressed sequence tag databases for novel proteins containing PH domains possessing a PPBM. Surprisingly, many of the PH domains that we identified do not bind PtdIns(3,4,5)P(3), but instead possess unexpected and novel phosphoinositide-binding specificities in vitro. These include proteins possessing PH domains that interact specifically with PtdIns(3,4)P(2) [TAPP1 (tandem PH-domain-containing protein-1) and TAPP2], PtdIns4P [FAPP1 (phosphatidylinositol-four-phosphate adaptor protein-1)], PtdIns3P [PEPP1 (phosphatidylinositol-three-phosphate-binding PH-domain protein-1) and AtPH1] and PtdIns(3,5)P(2) (centaurin-beta2). We have also identified two related homologues of PEPP1, termed PEPP2 and PEPP3, that may also interact with PtdIns3P. This study lays the foundation for future work to establish the phospholipid-binding specificities of these proteins in vivo, and their physiological role(s).
Similar articles
- Evidence that the tandem-pleckstrin-homology-domain-containing protein TAPP1 interacts with Ptd(3,4)P2 and the multi-PDZ-domain-containing protein MUPP1 in vivo.
Kimber WA, Trinkle-Mulcahy L, Cheung PC, Deak M, Marsden LJ, Kieloch A, Watt S, Javier RT, Gray A, Downes CP, Lucocq JM, Alessi DR. Kimber WA, et al. Biochem J. 2002 Feb 1;361(Pt 3):525-36. doi: 10.1042/0264-6021:3610525. Biochem J. 2002. PMID: 11802782 Free PMC article. - Crystal structure of the phosphatidylinositol 3,4-bisphosphate-binding pleckstrin homology (PH) domain of tandem PH-domain-containing protein 1 (TAPP1): molecular basis of lipid specificity.
Thomas CC, Dowler S, Deak M, Alessi DR, van Aalten DM. Thomas CC, et al. Biochem J. 2001 Sep 1;358(Pt 2):287-94. doi: 10.1042/0264-6021:3580287. Biochem J. 2001. PMID: 11513726 Free PMC article. - DAPP1: a dual adaptor for phosphotyrosine and 3-phosphoinositides.
Dowler S, Currie RA, Downes CP, Alessi DR. Dowler S, et al. Biochem J. 1999 Aug 15;342 ( Pt 1)(Pt 1):7-12. Biochem J. 1999. PMID: 10432293 Free PMC article. - Signal-dependent membrane targeting by pleckstrin homology (PH) domains.
Lemmon MA, Ferguson KM. Lemmon MA, et al. Biochem J. 2000 Aug 15;350 Pt 1(Pt 1):1-18. Biochem J. 2000. PMID: 10926821 Free PMC article. Review. - Molecular determinants in pleckstrin homology domains that allow specific recognition of phosphoinositides.
Lemmon MA, Ferguson KM. Lemmon MA, et al. Biochem Soc Trans. 2001 Aug;29(Pt 4):377-84. doi: 10.1042/bst0290377. Biochem Soc Trans. 2001. PMID: 11497993 Review.
Cited by
- Phosphatidylinositol-3,4,5-trisphosphate: tool of choice for class I PI 3-kinases.
Salamon RS, Backer JM. Salamon RS, et al. Bioessays. 2013 Jul;35(7):602-11. doi: 10.1002/bies.201200176. Bioessays. 2013. PMID: 23765576 Free PMC article. Review. - The phosphoinositide-associated protein Rush hour regulates endosomal trafficking in Drosophila.
Gailite I, Egger-Adam D, Wodarz A. Gailite I, et al. Mol Biol Cell. 2012 Feb;23(3):433-47. doi: 10.1091/mbc.E11-02-0154. Epub 2011 Dec 7. Mol Biol Cell. 2012. PMID: 22160599 Free PMC article. - The phosphoinositide 3-kinase signaling pathway in normal and malignant B cells: activation mechanisms, regulation and impact on cellular functions.
Pauls SD, Lafarge ST, Landego I, Zhang T, Marshall AJ. Pauls SD, et al. Front Immunol. 2012 Aug 9;3:224. doi: 10.3389/fimmu.2012.00224. eCollection 2012. Front Immunol. 2012. PMID: 22908014 Free PMC article. - An essential role for the SHIP2-dependent negative feedback loop in neuritogenesis of nerve growth factor-stimulated PC12 cells.
Aoki K, Nakamura T, Inoue T, Meyer T, Matsuda M. Aoki K, et al. J Cell Biol. 2007 Jun 4;177(5):817-27. doi: 10.1083/jcb.200609017. Epub 2007 May 29. J Cell Biol. 2007. PMID: 17535963 Free PMC article. - Imaging and manipulating phosphoinositides in living cells.
Balla T. Balla T. J Physiol. 2007 Aug 1;582(Pt 3):927-37. doi: 10.1113/jphysiol.2007.132795. Epub 2007 Mar 29. J Physiol. 2007. PMID: 17395624 Free PMC article.
References
- Curr Opin Cell Biol. 1999 Apr;11(2):219-25 - PubMed
- Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4633-8 - PubMed
- Biochem J. 1999 Jun 1;340 ( Pt 2):359-63 - PubMed
- FEBS Lett. 1999 May 28;451(3):220-6 - PubMed
- Cell. 1999 Jun 25;97(7):817-20 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous