A small molecule C5a receptor antagonist protects kidneys from ischemia/reperfusion injury in rats - PubMed (original) (raw)

A small molecule C5a receptor antagonist protects kidneys from ischemia/reperfusion injury in rats

Thiruma V Arumugam et al. Kidney Int. 2003 Jan.

Free article

Abstract

Background: C5a has been implicated in numerous pathophysiological conditions, including ischemia/reperfusion (I/R) injury of the kidney. We examined whether a novel and specific C5a receptor antagonist, the cyclic compound AcF-[OPdChaWR] could moderate I/R-induced renal injury in rats.

Methods: Female Wistar rats were subjected to renal ischemia (60 min) and reperfusion (5 h). Rats were treated with either 1 mg/kg IV in 5% ethanol/saline or 10 mg/kg PO in 25% ethanol/saline prior to ischemia. I/R injury was characterized by significant tissue hemorrhage with increased microvascular permeability, elevated renal tissue levels of tumor necrosis factor-alpha (TNF-alpha) and myeloperoxidase (MPO), increased serum levels of creatinine and aspartate aminotransferase (AST) and hematuria.

Results: Pre-ischemic treatment with the C5a receptor (C5aR) antagonist (1 mg/kg IV or 10 mg/kg PO) substantially inhibited or prevented I/R-induced hematuria, vascular leakage, tissue levels of TNF-alpha and MPO, and serum levels of AST and creatinine. Histological examination of kidneys from antagonist pretreated I/R animals showed a marked reduction in tissue damage compared to drug-free I/R rats. This antagonist, however, did not inhibit complement-mediated lysis of red blood cells, suggesting unimpaired formation of the membrane attack complex (MAC).

Conclusions: The results demonstrate for the first time that a selective antagonist of both human and rat C5a receptors, given either intravenously or orally, significantly protects the kidney from I/R injury in the rat. We conclude that C5a is an important pathogenic agent in renal I/R injury, and that C5a receptor antagonists may be useful therapeutic agents for the pretreatment of anticipated renal reperfusion injury in humans.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources